
D9.4 - Test cases for the
CoRoSect ecosystem

corosect.eu

Ref. Ares(2023)5570051 - 11/08/2023

1

Author(s)/Organisation(s) ATOS

Contributor(s) UM, CERTH, OAMK, TECNOVA, AGVR, ROB, HSEL

Work Package WP9. Secure platform integration

Delivery Date (DoA) 2023-01-31

Actual Delivery Date 11/08/2023

Abstract: This document summarises the test bed for the validation of each

Shop Floor Component integration with the Shop Floor Manager.

These tests rely on the first version of the integrated CoRoSect system

and describe how the CoRoSect’s Digital Twins are used to support

data and commands’ flows according to the RAMI4.0 interfaces

defined in D9.1. On a second stage, the CoRoSect subsystems’

orchestration (Shop floor plus MES) needed to run rearing processes

is also tested. This complete baseline validation of the CoRoSect’s

integrated system enables it for the pilots’ evaluation in WP10.

Document Revision History

Date Version Author/Contributor

/ Reviewer

Summary of main changes

15/02/2023 V0.1 ATOS First proposed ToC

15/05/2023 V1.0 ATOS First round of contributions for DT tests.

25/06/2023 V1.3 ATOS/HSEL Orchestration’s tests added

04/07/2023 V1.4 ATOS Updated tables’ tests

07/07/2023 V1.5 ATOS Internal review version

10/08/2023 V2.0 ATOS Final version to be delivered

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the EC Services)

RE
Restricted to a group specified by the consortium (including the EC

Services)

CO Confidential, only for members of the consortium (including the EC)

2

Funding Scheme: Innovation Action (IA) ● Topic: H2020-ICT-46-2020

Start date of project: 01 January, 2021 ● Duration: 36 months

© CoRoSect Consortium, 2021.

Reproduction is authorised provided the source is acknowledged.

CoRoSect Consortium

Participant
Number

Participant organisation name
Short
name

Country

1
UNIVERSITEIT MAASTRICHT

https://www.maastrichtuniversity.nl/
UM NL

2
ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS

https://www.certh.gr/
CERTH GR

3
HOCHSCHULE EMDEN/LEER

https://www.hs-emden-leer.de/en/
HSEL GER

4
LUONNONVARAKESKUS

https://www.luke.fi/
LUKE FIN

5
OULUN AMMATTIKORKEAKOULU OY - OULU UNIVERSITY OF APPLIED

SCIENCES

https://www.oamk.fi/fi/
OAMK FIN

6
FUNDACION PARA LAS TECNOLOGIAS AUXILIARES DE LA

AGRICULTURA

http://www.fundaciontecnova.com/
TECNOVA ES

7
KATHOLIEKE UNIVERSITEIT LEUVEN

https://www.kuleuven.be/kuleuven/
KU LEUVEN BEL

8
ATOS IT SOLUTIONS AND SERVICES IBERIA SL

https://atos.net/en/
ATOS ES

9
ROBOTNIK AUTOMATION SLL

http://www.robotnik.es/
ROB ES

10
AGVR BV

www.agvegroup.com
AGVR NL

11
NASEKOMO AD

https://nasekomo.life/
NASEKOMO BG

12
ENTOMOTECH SL

http://entomotech.es/
ENTOMOTECH ES

13
ENTOCYCLE LTD

https://www.entocycle.com/
ENTOCYCLE GB

14
SOCIETA AGRICOLA ITALIAN CRICKET FARM SRL

https://www.italiancricketfarm.com/
ICF IT

15
INVERTAPRO AS

https://www.invertapro.com/
INVERTAPRO NOR

16
FIELD LAB ROBOTICS BV

https://www.fieldlabrobotics.com/
FLR NL

17
FoodScale Hub

https://foodscalehub.com/
FSH RS

18
AgriFood Lithuania DIH

https://www.agrifood.lt/
AFL LT

19
CENTRO INTERNAZIONALE DI ALTISTUDI AGRONOMICI MEDITERRANEI

http://www.iamb.it/
CIHEAM IT

https://www.maastrichtuniversity.nl/
https://www.certh.gr/
https://www.hs-emden-leer.de/en/
https://www.luke.fi/
https://www.oamk.fi/fi/
http://www.fundaciontecnova.com/
https://www.kuleuven.be/kuleuven/
https://atos.net/en/
http://www.robotnik.es/
https://foodscalehub3-my.sharepoint.com/personal/dm_foodscalehub3_onmicrosoft_com/Documents/www.agvegroup.com
https://nasekomo.life/
http://entomotech.es/
https://www.entocycle.com/
https://www.italiancricketfarm.com/
https://www.invertapro.com/
https://www.fieldlabrobotics.com/
https://foodscalehub.com/
https://www.agrifood.lt/
http://www.iamb.it/

3

LEGAL NOTICE

The information and views set out in this application form are those of the author(s) and do not

necessarily reflect the official opinion of the European Union. Neither the European Union

institutions and bodies nor any person acting on their behalf may be held responsible for the use

which may be made of the information contained therein.

4

Table of Contents
1 Introduction ... 10

1.1. Scope of the deliverable .. 10

1.2. Relationships with other tasks and deliverables ... 10

1.3. Structure of the document .. 12

2. CoRoSect integrated system testbed .. 13

2.1. CoRoSect’s distributed instance .. 13

2.2. Subsystem interfaces (Digital Twins) ... 15

3. Integration tests cases .. 18

3.1. Overall validation scenario... 18

3.1.1. Data Uploading/Updating from Shop Floor Level. Synchronous data query/retrieve. 19

3.1.2. Asynchronous Data retrieval ... 21

3.1.3. Commands’ calling and responses’ retrieval .. 23

3.2. Stacking/De-staking Robot (D-Robot) validation ... 25

3.2.1. Properties’ integration tests ... 26

3.2.2. Operations’ triggering tests .. 27

3.3. Manipulation Robot + Visual Inspection module (M-RobotVI).. 30

3.3.1. Properties’ integration tests ... 30

3.3.2. Operations’ triggering tests .. 31

3.4. Intelligent Crates (I-Crates) .. 33

3.4.1. Properties’ integration tests ... 34

3.5. Automated Guided Vehicle (AGV) ... 36

3.5.1. Properties’ integration tests ... 37

3.5.2. Operations’ triggering tests .. 40

3.6. HoloLens System .. 43

3.6.1. Properties’ integration tests ... 43

3.6.2. Operations’ triggering tests .. 44

3.7. Route Manager .. 46

3.7.1. Properties’ integration tests ... 46

3.7.2. Operations’ triggering tests .. 47

3.8. Objects detector .. 49

3.8.1. Properties’ integration tests ... 49

4. Functional tests ... 51

4.1. Data gathering, storage and presentation ... 51

4.1.1. Historical data retrieval: SQL Interface ... 52

5

4.1.2. Historical data retrieval: Time Series .. 53

4.1.3. Historical data presentation dashboards .. 54

4.2. Synchronous and Asynchronous information management ... 54

4.2.1. Synchronous data query/retrieve ... 54

4.2.2. Asynchronous data query/retrieve ... 55

5. Simple orchestration tests .. 57

5.1. DRobot – Test Scenarios .. 57

5.2. MRobot with VI – Test Scenario ... 58

5.3. RouteManager – Test Scenarios .. 58

5.4. AGV – Test Scenario ... 59

5.5. RouteManager and AGV – Test Scenarios ... 59

5.6. Combined test scenario ... 60

6. Conclusions ... 64

6

Executive Summary
This document is part of the CoRoSect’s System Integration and Evaluation process, developed mainly

in WP9 but relying on the System Architecture presented in Task 2.3 and the Service-Oriented

Information Management System (IMS) developed within WP4 (Task 4.3). Its purpose is to describe

the executed tests on the different CoRoSect system interfaces (Task 9.1), to validate all the data and

commands’ flows that enable the CoRoSect Integrated System version 1 (Task 9.2) to be used within

the incoming pilots.

This is the first deliverable from Task 9.3 (Testing, optimization, and technical validation) and

specifically, it shows the Digital Twins (DT) developed within WP9 to map the project’s Shop Floor

Components and demonstrates how these support the commands and data flows between the

CoRoSect’s Shop Floor Manager (SFM) and the CoRoSect’s Shop Floor Components (and vice versa).

These flows are evaluated using the IMS within the Integrated CoRoSect Platform Release version 1,

presented in D9.2, plus the OPC servers instances provided by CoRoSect’s OPC native robots and the

integrated MQTT broker supporting the MQTT RAMI4.0 compliant communications, according to the

developments shown in D9.2 and D2.3. A specific instance of the CoRoSect’s Shop Floor Manager with

its embedded Decision Support System on top of the testing scenario, triggers and controls data

requests, commands, and events’ management, by testing the synchronous (Query/Retrieve) and

asynchronous (Subscriptions) channels.

Within the introduced framework, this text presents the results of the first round of integration tests

for the full CoRoSect system that validates:

• Shop Floor components’ interfaces evaluation, designed and implemented in WP9, used to

upload data from robots and invoke supported commands. These are developed for:

o OPC-UA components, including: MRobot plus Visual Inspection subsystem; DRobot;

and HoloLens devices.

o MQTT reporting devices: AGV; Route Manager; and Objects Detector

• IMS RAMI4.0 compliant interface (using Eclipse BaSyx implementation) to integrate with the

Shop Floor Manager and the Decision Support System

• Shop Floor Manager orchestration of the Shop Floor Components, through the IMS

• The system general functionalities implementations, regarding the data provisioning and user

interfaces to present shop floor data and shop floor management

All these together will enable the CoRoSect System to support the incoming pilots in insects’ farms

and provide the required feedback to improve its performance. This testing and evaluation process

will continue during the pilots’ execution to complete the task 9.3 objectives that will be presented in

D9.5.

7

List of tables

Table 1. Properties’ availability tests for D-Robot .. 26

Table 2. List of supported commands from D-Robot AAS .. 27

Table 3. ExecuteGeneralTask command test for D-Robot.. 27

Table 4. DeStackCrate command test for D-Robot... 28

Table 5. StackCrate command test for D-Robot ... 28

Table 6. EmergencyStop command test for D-Robot ... 29

Table 7. InitializeCell command test for D-Robot ... 29

Table 8. Properties’ availability tests for M-RobotVI .. 30

Table 9. List of supported commands from M-RobotVI AAS .. 32

Table 10. MRobotExecuteTask command test for M-RobotVI ... 32

Table 11. VIStart command test for M-RobotVI ... 32

Table 12. Properties’ availability tests for I-Crate device ... 34

Table 13. Properties’ availability tests for AGV device ... 37

Table 14. List of supported commands for AGV AAS.. 40

Table 15. StartPause command test for AGV ... 40

Table 16. StopPause command test for AGV .. 41

Table 17. Pick command test for AGV .. 41

Table 18. Drop command test for AGV ... 42

Table 19. CancelOrder command test for AGV .. 42

Table 20. Properties’ availability tests for HoloLens device ... 43

Table 21. List of supported commands for Hololens’ AAS ... 44

Table 22. DisplayMessage command test for HoloLens ... 44

Table 23. DisplayTrajectory command test for HoloLens ... 44

Table 24. StopDisplayMessage command test for HoloLens.. 45

Table 25. StopDisplayTrajectory command test for HoloLens ... 45

Table 26. Properties’ availability tests for Route Manager device ... 46

Table 27. List of supported commands for Route Manager AAS ... 47

Table 28. NewRoute command test for RouteManager .. 47

Table 29. CancelRoute command test for RouteManager ... 48

Table 30. StartRoute command test for RouteManager .. 48

Table 31. Properties’ availability tests for Objects Detector system.. 49

Table 32. Commands’ sequence for Use Case 1 Shop Floor components’ Orchestration. Triggered

from the SFM and registered in the IMS. ... 63

8

List of figures

Figure 1. Test Cases for the CoRoSect ecosystem main dependences and outcomes 11

Figure 2. Distributed testbed for CoRoSect’s System validation ... 13

Figure 3. Integrated CoRoSect System (V1) implementation (From D9.2) 14

Figure 4. Example of the Digital Twin structure defined within CoRoSect. Represents the MRobotVI

DT. ... 17

Figure 5. General approach to the integration test cases, focused on the CoRoSect’s BaSyx

interface. ... 18

Figure 6. Common data upload/update from the Shop floor device to the IMS, reflected in the

corresponding Digital Twin property. ... 19

Figure 7. Common data query to the IMS (from SFM to IMS). .. 20

Figure 8. CoRoSect’s system subscription and notification process description. 21

Figure 9. BaSyx INVOKE HTTP resource to request the execution of Command/Operation P. 23

Figure 10. D-Robot integration scenario .. 25

Figure 11. M-RobotVI integration scenario ... 30

Figure 12. I-Crate integration scenario .. 34

Figure 13. AGV integration with IMS scenario ... 36

Figure 14. HoloLens’ device integration scenario .. 43

Figure 15. Route Manager and MES integration scenario ... 46

Figure 16. I-Crate integration scenario .. 49

Figure 17. Historical datasets gathering and retrieval schema.. 52

Figure 18. Dashboard test for hotelli_musta I-Crate: Parameters’ monitoring................................. 54

Figure 19. Test Scenario: DRobot-01 ... 57

Figure 20. Test Scenario: DRobot-02 ... 58

Figure 21. Test Scenario: DRobot-03 ... 58

Figure 22. Test Scenario: MRobot-01 .. 58

Figure 23. Test Scenario: RouteManager-01 ... 59

Figure 24. Test Scenario: RouteManager-02 ... 59

Figure 25. Test Scenario: RouteManager with AGV - 01.. 60

Figure 26. Test Scenario: RouteManager with AGV - 02.. 60

Figure 27. Combined test scenario .. 62

9

List of Abbreviations and Acronyms

AAS Asset Administration Shell

AGV Automated Guided Vehicle

AI Artificial Intelligence

API Application Programming Interface

BPMN Business Process Model and Notation

DMS Data Management System

D-Robot (Stacking) De-Stacking Robot

DS Decision-Making System

DSS Decision Support System

DT Digital Twin

DX.Y Deliverable X.Y

ERP Enterprise Resource Planning

HRC Human-Robot collaboration

HTTP Hypertext Transfer Protocol

ICF Italian Cricket Farm

ID Identification

IIoT Industrial Internet of Things

IMS Information Management System

IoT Internet of Things

IT Information Technology

JSON JavaScript Object Notation

Mx Month X

MES Manufacturing Execution System

ML/DL Machine Learning / Deep Learning

MQTT Message Queuing Telemetry Transport

M-Robot Manipulation Robot

NGSI Next Generation Service Interfaces

OD Objects’ Detector

OPC-UA OLE (Object Linking and Embedding) for Process Control-Unified Architecture

OT Operations Technology

Q&R Query & Retrieve

RAMI4.0 Reference Architecture Model for Industry 4.0

RCS Robot Control System

REST Representational State Transfer

RM Route Manager

ROS Robot Operating System

SFM Shop Floor Manager

SLAM Simultaneous Localization And Mapping

SQL Structured Query Language

TCP Transmission Control Protocol

VI Visual Inspection

WP Work Package

10

1 Introduction

This deliverable closes the first operational version of the CoRoSect integrated system by testing and

evaluating the communication channels, covering data and commands’ flows between its

components. With this, the purpose of this document is twofold: i) on one side, it validates the

communication protocols and flows driven by the CoRoSect’s IMS to link the project’s IT systems,

(represented here by the Shop Floor Manager and the Decision Support System) with the OT layer

that composes the CoRoSect’s Shop Floor; whilst on the other side, ii) it ensures that the executed

commands (and data responses) by each integrated system (mainly robots and devices deployed at

the shop floor) match the expected behaviour. These two targets enable the CoRoSect’s system

orchestration among all its shop floor components, driven by its shop floor manager. The carried out

validation process enables the CoRoSect Integrated System to jump to the next stage and support the

use cases execution during the CoRoSect’s pilots in the insects’ farms.

1.1. Scope of the deliverable
The scope is to resume the integrated system validation process through a series of communication

tests that are applied between the software components of the CoRoSect System (Version 1.0). A

process that guarantees the proper performance of the required functionalities and enables the

RAMI4.0 compliant shop floor data access and distribution. In the same way, the SFM must be able to

identify, command and control all the project’s shop floor layers, according, also, to RAMI4.0

guidelines. Aligned, this test bed involved both: a) the IMS, SFM, DSS and AAS developers (IT layer);

with b) the devices and shop floor mechatronics providers. These lasts actors will also validate the

proper physical execution of the corresponding received commands and the generated responses.

The test cases will include all commands (operations) and data sets (properties) reported by each

component’s interface. The interfaces have been developed within Task 9.1 and compose each

corresponding I4.0 Asset Administration Shell (AAS) which, in turn, are implemented by its Digital

Twin (DT) within the CoRoSect IMS.

This set of Digital Twins supports all the data and commands’ flows as the core of the CoRoSect MES

functionalities. The test cases will validate both, the integrated system and the Digital Twins approach

defined to implement it. This qualifies the developed system for use in CoRoSect pilots. In this sense,

it is worth to remark that not all the properties and commands initially identified in D9.1 interfaces

have been fully implemented for this first version of the CoRoSect Integrated System, because they

are not needed to perform CoRoSect’s use cases. The focus of this validation process has been set on

the properties and commands required to support all the use cases defined by WP10.

1.2. Relationships with other tasks and deliverables
As mentioned, the resumed test cases validate the CoRoSect Integrated System which is the result of

the work done so far by different tasks within different project’s Work Packages. Figure 1 represents

these dependencies that make possible the work of the task 9.3 and its validation process.

11

Figure 1. Test Cases for the CoRoSect ecosystem main dependences and outcomes

According to Figure 1 the dependencies and results linked to this deliverable are as follows:

• From WP2 - Use-cases, user requirements and system architectures

o Specifically, Task 2.3 (D2.4) provides the system architecture and the roles of each

component that guide the implementation of the CoRoSect system to be validated.

This is also the source of the functionalities that must be guaranteed.

• From WP4 - Farm-level modelling and orchestration

o Task 4.1 (D4.1) from a generic perspective, introduced the processes flows within the

system’s core that define the commands and data flows respectively. These must be

aligned for the proper final CoRoSect’s system specification.

o Task 4.2 (D4.2) contributes to the processes definitions and functionalities required in

terms of devices’ control capabilities and required datasets to implement decision

support capabilities.

o Task 4.3 provides the design of the internal IMS functionalities, data sharing and

commands interfaces plus the Digital Twins implementation. All these will be

validated (and enhanced) during the validation test cases.

• From WP9 - Secure platform integration (itself)

o Task 9.1 (D9.1) defines the RAMI4.0 compliant interfaces (using I4.0 Asset

Administration Shells) to communicate the IMS with the shop floor components at

the southbound plus the corresponding interface (also RAMI4.0 compliant) at the

northbound to link the SFM with the IMS, as well as other ERP systems in the farm.

All these interfaces are to be validated in the test cases.

o Task 9.2 (D9.2) contributes with the instance of the CoRoSect System (V1) that

supports all the resumed test cases. In turn, as validation process feedback, this task

will get improvements and detected bugs to enhance the final CoRoSect System

version.

• From technical Work Packages

o The rest of the technical work packages (WP5 to WP8) develops the different shop

floor components and supports the physical validation of the sent commands plus the

12

proper dataset updates, using their corresponding interfaces (as RAMI4.0 compliant

AAS)

• To WP10 - Pilot studies demonstration and evaluation

o As its main outcome, the validation test cases provide WP10 pilots with a functional

instance of the integrated system to support and validate, in turn, the CoRoSect use

cases in the selected insect farms.

1.3. Structure of the document
The CoRoSect ecosystem is built by two main divided blocks that correspond to i) the I4.0 IT systems,

composed by the Shop Floor devices; and ii) the OT systems, represented by the CoRosect’s MES. With

this approach, the Shop Floor devices will cover all the mechatronics and IoT devices to be deployed

in the farms’ scenarios whilst the MES includes the IMS, the SFM and the DSS components. This

structure is followed to organise and resume the set of test cases within this document:

• Section 1 - Introduction (this section). Introduces the objectives, scope, and outcomes for task

9.3 summarised for this first task’s deliverable, plus showing and justifying the documents’

structure to resume these contents.

• Section 2 - CoRoSect integrated System scenario. Describes the instances of the software

components, linked, in case, to their hardware devices (corresponding robots, IoT systems,

cameras, etc.) used to run the validation test cases and the corresponding interfaces checked.

• Section 3 - Integration tests. Covers the CoRoSect Ecosystem test bed for the Shop floor

components including corresponding properties (data sharing) and operations (commands’

flows) for:

o Stacking/De-staking Robot (D-Robot)

o Manipulation Robot (M-Robot)

o Intelligent Crates (I-Crates)

o Automated Guided Vehicle (AGV)

o HoloLens System

o Route Manager

o Objects detector

• Section 4 - Functional tests. Deals with the functional validation of data distribution and data

presentation addressed to the CoRoSect MES through its IMS.

• Section 5 - Simple orchestration tests. Validates the Shop Floor Manager (assisted by the

Decision Support System) capability to command the CoRoSect’s Shop Floor.

• Section 6 – Conclusions. Finally, presents the main outcomes and conclusions of the validation

test cases executed.

13

2. CoRoSect integrated system testbed
2.1. CoRoSect’s distributed instance
All test cases were run in a distributed way: each shop floor component, composed by the physical

device plus its corresponding server (either OPC-UA or MQTT Client) and/or its customised simulator

is executed within the provider’s premises. Using TCP (supporting OPC and MQTT), these servers and

simulators connect with the cloud IMS instance, which acts as the data hub and commands’ driver. In

turn, the Shop Floor Manager and the DSS work in this way, using the IMS as the gateway to access

the shop floor components. The schema for this distributed testbed is shown in Figure 2.

Figure 2. Distributed testbed for CoRoSect’s System validation

The implementation of this test bed corresponds to the Integrated CoRoSect System version 1

instance detailed in D9.2 (Figure 3) and is according to the CoRoSect System Architecture presented

in D2.4.

The purpose of the testbed is to validate the communications between the implemented servers using

the interfaces and protocols defined following RAMI4.0 requirements. This is to enable the work done

during the first stage of the project, designing the system architecture and the integration interfaces,

for their use in the CoRoSect pilots and, in turn, the validation of the functional requirements defined

by WP2. According to the system architecture and its implementation (Figure 3), we have divided the

testbed (Figure 2) in three main blocks:

14

Figure 3. Integrated CoRoSect System (V1) implementation (From D9.2)

15

• The Shop Floor, covering all the CoRoSect’s shop floor components. This includes the servers

implemented to connect the CoRoSect MES with the corresponding devices. Each device and

cell controller will run in the provider’s network and will connect to the cloud IMS instance

using TCP. Here we can distinguish two sets of shop floor devices:

o Those using OPC-UA on top of TCP. They use a specific developed OPC-US server and

communicates with the core system through an OPC connector developed within

CoRoSect’s scope. These are:

▪ The Manipulation Robot (M-Robot) also embedding the Visualization Module

(VI). This is provided by UM (the M-Robot) plus CERTH (VI) and runs in the UM

premises.

▪ The Stacking/Destacking Robot (D-Robot) provided by Robotnik and running

within its network infrastructure.

▪ The HoloLens device supported by CERTH and connected from their premises.

o Those relying on MQTT protocol driven by TCP. They implement an MQTT client to

publish/subscribe (update data/get commands) in the MQTT broker provided by the

IMS. They are:

▪ The I-Crates and their sensors infrastructures, supported by OAMK.

▪ The Routes’ Manager and the Objects’ detector developed and tested by

ATOS (merged in this V1 version in the Routes’ Manager MQTT module).

▪ The AGV provided by AGVR.

• The Shop Floor Manager (SFM) and the Decision Support System (DSS) designed and

implemented by HSEL. Their structure and functionalities are introduced in D4.1 and D4.2, and

their final description will be shown as part of the MES system in D4.3. Shop Floor Manager

accesses the IMS using the CoRoSect’s customised implementation of the Eclipse BaSyx1

interface. This is supported by an HTTP connection.

• The CoRoSect’s Information Management System (IMS) infrastructure is deployed in a cloud

server managed by ATOS. It is built on top of a Kubernetes cluster and all CoRoSect partners

have access to it. This way, the IMS connects with all shop floor components through the

corresponding interfaces to collect and distribute shop floor data. It also enables the

command and control of the shop floor devices by the SFM/DSS using I4.0 protocols and

standards. IMS relays on the RAMI4.0 interfaces and Asset Administration Shells defined in

Task 9.1. Further details of this component will be provided in D4.3.

2.2. Subsystem interfaces (Digital Twins)
The integration test cases executed and described within this text also target the validation of each

interface implementation carried out by each shop floor provider and so, the corresponding Digital

Twin (DT) created in the IMS. Each of the DTs maps all the relevant parameters and commands for its

physical device, following the RAMI 4.0 Layer 4 compatible technology by using the Asset

Administration Shell (AAS) and abstracting its hardware implementation from the eyes of the SFM.

The CoRoSect’s DTs thus constitute an implementation of the I4.0 Asset Administration Shell (AAS)

defined by Task 9.1 (described in D9.1). The Digital Twin full structure and the way it is embedded

within the IMS are the contents of the D4.3. To better illustrate the tests cases, we advance here the

main concepts of their structure. Each DT can be represented as an entities’ tree composed by:

1 https://eclipse.dev/basyx/

16

• The root level is the Asset Administration Shell (AAS) entity, which details the structure and

hierarchy of the required data and information, with the reference links, of the set of sub-

models that represents all the capabilities and data offered by the device/system.

• A descriptive branch includes the Asset entity, which mainly contains physical and descriptive

information that refers the device/system in the real world.

• Of the AAS hangs the different Sub-models entities. As mentioned in D9.1, “the Sub-model is

the logical placeholder for containing the description of all the properties and functions for

which the asset/service provider would be able to share data or get commands to act on”.

These Sub-models articulate the actual digitalization of the device/system as they support all

the data and commands transactions. Each sub-model corresponds to a specific characteristic

(or set of related ones), a functionality and/or a command supported/offered by the system,

known internally as “Element”. Within CoRoSect, each sub-model can group different

“Elements” as Sub-model Element entities.

• The Sub-model Elements represent the characteristics and attributes of each sub-model,

which finally map the capabilities of the digitalised device. We manage three different Sub-

model Element types:

o Properties (SubmodelElementProperty): represents an attribute of the

system/device (e.g., location, temperature, status, etc.), including its value and the

metadata needed to read and interpret it. These properties are usually updated by

the device system controller in the IMS, periodically or as a response to a related

command.

o Operations or Commands (SubmodelElementOperation): maps a concrete operation

supported by the device that can be triggered by the SFM. It includes both, the input

variables (or values) required to execute the command; and the output (if the output

is offered also through this element) for the call. Usually, the SFM will update these

SubmodelElementOperation entities by writing their input variable/s. In this way, the

IMS transmits to the device’ system controller both, the command, and the

parameters.

o Ranges (SubmodelElementRange): It represents attributes as the

SubmodelElementProperty element with the possibility of defining two possible

values for a given attribute/s. In this case, a SubmodelElementRange can be used to

define a minimum and maximum value where the represented attribute can

fluctuate.

Figure 4 shows an example of this Digital Twin structure, specifically the one created to map the

Manipulation Robot (plus Visual Inspection module). The rest of DTs follow a similar structure and will

be presented in D4.3, as they also represent the Information Model core of the CoRoSect MES. The

IMS used within the testbed for the testcases defines Digital Twins for:

• Manipulation Robot + Visual Inspection module (MRobotVI)

• Staking/Destacking Robot (DRobot)

• CoRoSect’s Microsoft HoloLens system (Hololens)

• Route Management system (RManager)

• Objects’ Detector system (ObjectDetector)

• Pilot’s Automated Guided Vehicle (AGV1)

• One of the Intelligent Crates developed for the pilots (ICrate)

These DTs support the interfaces and the data and commands flows used in the test cases described

in Section 3.

17

As shown in Figure 2, the shop floor providers have also designed simulators for their corresponding

systems. These simulators have been developed to support the device AAS interface, exposing the set

of properties and operations which will be finally implemented by the actual physical system. The

purpose of these simulators is to mock-up the RAMI4.0 compliant responses to SFM commands and

data updates through the IMS. This is useful for the refinement and testing of the IMS connectors and

the implementation of the corresponding systems’ DTs.

Figure 4. Example of the Digital Twin structure defined within CoRoSect. Represents the MRobotVI DT.

For each shop floor component listed in D9.1 and D9.2, the corresponding BaSyx API calls will be

executed to ensure that each of the AAS sub-models and sub-models’ elements defined on its

corresponding AAS are present on the Digital Twin created in the IMS and accessible, as well as the

reported values.

18

3. Integration tests cases
3.1. Overall validation scenario
Task 9.3 test cases are intended to verify the proper integration of each CoRoSect Shop Floor

component with the project’s centralised Manufacturing and Execution System (MES). This is done

through the Information Management System (IMS) and according to the components’ corresponding

Asset Administration Shell (AAS) (D9.1 Interfaces). The targets are:

1. to check the data availability and accessibility (Data Query/Retrieve) reported by each

component’s interface, ensuring the data update process triggered by each component;

2. to ensure the proper calling of each of the listed commands (Commands Call/Retrieve)

supported by each component and their proper responses through the IMS; and

3. to refine the adoption and implementation (data formats, adherence to data models, use of

protocols and commands executions) of the mentioned interfaces to ensure I4.0 compatibility

of the different DT supported by the RAMI 4.0.

The evaluation point is set on the RAMI4.0 compliant BaSyx interface developed for the IMS which

works as the communication bridge between the IMS and the pair SFM and DSS. It acts as the

communication hub within the CoRoSect’s MES (Figure 5). This REST interface exposes the HTTP

endpoints (and methods) to:

i) read AAS entities and structures stored in the IMS (access all registered Digital Twins)

ii) read (query/retrieve) sub-models and sub-model elements (properties) for all registered

AAS/DTs in the IMS, retrieving all corresponding values and linked metadata (execute

synchronous data query/retrieve)

iii) get subscribed to all/selected elements (properties and operations) to automatically

receive any update on them (implements asynchronous data sharing through

publish/subscribe)

iv) invoke (execute) any sub-model element property linked to a registered DT, triggering the

execution of the corresponding command in the shop floor device.

Figure 5. General approach to the integration test cases, focused on the CoRoSect’s BaSyx interface.

With this approach and by controlling when and what each shop floor system produces and updates

attributes on its local cell controller:

• By synchronously query/retrieve updated data to the IMS through its BaSyx interface we

validate both: a) the interface implementation and the corresponding mapped Digital Twin;

and b) the proper communication between the component’s Cell Control System and the

corresponding connector (either MQTT or OPC-UA), as well as their software

implementations.

19

• By receiving asynchronous notifications (on data updates) we are also validating a) the

communication between the local shop floor device and the IMS; and b) the implementation

of the asynchronous data sharing paths.

By controlling the physical execution of the commands triggered by the SFM we:

• Validate the commands’ flows between the SFM and the corresponding shop floor device,

checking the full path: i) BaSyx’s Invoke endpoint; ii) operation mapping (structure,

input/output parameters, etc.) on the DT; iii) IMS connection (specific developed connector)

with the cell controller; and iv) the proper translation of the input values and instruction

received to the proprietary system protocols.

• Also, the responses’ updates from the system cell controller reinforce the validation of the

communication protocols implementation, the deployed DTs and the data sharing paths

(synchronous and asynchronous).

The integration test cases for CoRoSect system have three steps in common that are customised later

to each property and operation to be checked. These are: i) the data uploading and updating from the

shop floor devices towards the IMS, to validate the synchronous data query/retrieve processes; ii) the

notifications to the SFM when new subscribed data arrives, to check the asynchronous data sharing;

and iii) the commands triggering and responses retrieval, to complete the DT validation and the

functionalities of the MES. These steps are repeated for each system validation test. Their common

schemas are shown here.

3.1.1. Data Uploading/Updating from Shop Floor Level. Synchronous data

query/retrieve.
Deliverables from WP4 (D4.1 and D4.3) and interfaces (D9.1) and CoRoSect’s system implementation

(D9.2) describe in detail the processes designed to integrate the data uploading and updating from

the Shop Floor components.

Figure 6. Common data upload/update from the Shop floor device to the IMS, reflected in the corresponding

Digital Twin property.

20

Figure 6, expanded from D9.2, describes the process followed by each shop floor system to update its

CoRoSect Digital Twin with data generated (and captured) by the physical device. This data is

registered and stored in the corresponding sub-model element property, to be served when requested

by the SFM (or any other CoRoSect system), or automatically notified to registered systems.

Figure 7. Common data query to the IMS (from SFM to IMS).

Figure 7 depicts the synchronous data query triggered from the CoRoSect’s MES (SFM+DSS). This

process is replicated by each test case in sections 3.2 and beyond, intended for validating: i) the proper

data update and data accessibility; ii) the proper implementation of the BaSyx corresponding method;

and iii) the correct implementation and use of the device’s digital twin.

The DSS/SFM pair a) launches the request by calling the corresponding BaSyx HTTP method (RAMI4.0

compliant) to query an AAS, a given Sub-model or a concrete Sub-model Element (mainly properties);

b) the IMS BaSyx module receives the request and converts it into an NGSI proper query, c) to be

managed within the CoRoSect’s IMS; d) the IMS retrieves the requested information and sends it back

to the BaSyx module, e) which adapts the data and its format to the BaSyx’s response; f) This is then

sent to the DSS, which processes it and g) caters it to the SFM.

Retrieve Sub-model
GET [BaSyx Server]/aas/[AAS_ID]/submodels/[Submodel_ID]

Headers Fiware-Service Define isolated environments where all defined DTs and datasets are
related. Can refer to e.g a testing environment or map all farm’s
deployed systems

Fiware-ServicePath

Payload No payload

Return values

code 404 AAS and/or Submodel not found

code 50X Server error

code 200/201 Success:

 Retrieves JSON object including: Submodel description + list of linked submodel
elements (properties, ranges and/or operations).

21

Retrieve Submodel Elements’ VALUES (for Submodel Elements’ PROPERTIES)
GET [BaSyx Server]/aas/[AAS_ID]/submodels/[Submodel_ID]/

submodel/submodelElements/[SubmodelElement_ID]/value

Headers Fiware-Service Define isolated environments where all defined DTs and datasets are
related. Can refer to e.g., a testing environment or map all farm’s
deployed systems

Fiware-ServicePath

Payload No payload

Return values

code 404 AAS and/or Submodel and/or Submodel Element Property not found

code 50X Server error

code 200/201 Success:

 Retrieves JSON object including value, valueType and valueId for the referred property.

Important Note: The corresponding IDs refer to the unique identifier defined in the corresponding

Asset Administration Shell (AAS) as "IdShort”.

3.1.2. Asynchronous Data retrieval
The asynchronous data retrieval tests guarantee that the latest data reported from the Shop Floor

level is notified to the Shop Floor Manager/Decision Support System immediately. To achieve this, the

IMS implements a Publish-Subscribe mechanism, supported by an NGSI Context Broker. Using this

middleware, the IMS will automatically send a POST notification to a registered HTTP endpoint

including the new information of interest every time a new update on this information is received,

without the interested system must request for it.

Figure 8. CoRoSect’s system subscription and notification process description.

Figure 8 depicts the publish/subscribe process within CoRoSect’s system to be asynchronously notified

when “Property X” changes. The Shop Floor Manager a) request a subscription to Property X (of a

selected DT) to the BaSyx module, subscribing the DSS (to receive notifications) as its HTTP endpoint;

b) the BaSyx module converts and redirects the subscription request (and parameters) to the IMS core,

using NGSI API; c) the IMS broker registers the subscription and the referred endpoint and returns and

“201-OK” (success) HTTP response, which is d) redirected to the SFM. When e) “Property X” is updated

in the IMS, the IMS f) checks its list of active subscriptions and sends the proper HTTP notification,

22

with the new values for “Property X” to the registered DSS endpoint; g) the DSS receives this new

information and acts according to its program.

Following tables list the BaSyx methods to work with the CoRoSect’s Asynchronous data retrieval: i)

create and register a subscription; and ii) Notification HTTP POST message.

Create and register a generic Subscription (using NGSI payload)
POST [BaSyx Server]/subscription

Headers Fiware-Service Define isolated environments where all defined DTs and datasets are
related. Can refer to e.g a testing environment or map all farm’s
deployed systems

Fiware-ServicePath

Payload JSON with
Subscription NGSI
payload

{
 "description":"Subs to Property X", //describes the subs’ target
 "subject":{ //defines ’what’ you are subscribing to
 "entities":[{
 "idPattern":"Property X:DT Y", //Property X (from DT Y)
 "type":"I4SubmodelElementProperty" //NGSI valuetype Property
 }],
 "condition":{
 "attrs":["value”] //when ”value” changes
 }
 },
 "notification":{ //send an http notification (POST) to
 "http":{
 "url":"http://dsshost:dssport/dss/notifications "
 },
 "attrs": ["temperature"] //including ”value” attribute
 }
}

Return values

code 400 Bad Request. Returns a description with the detected error

code 50X Server error

code 200/201 Success (Subscription properly executed)

 Header: subsID. Returns the subscription ID to later operate (modify/delete) with it.

NOTIFICATION
POST [http notification url]

Headers Fiware-Service Define isolated environments where all defined DTs and datasets are
related. Can refer to e.g a testing environment or map all farm’s
deployed systems

Fiware-ServicePath

Payload NGSI JSON
Notification
payload ref2

{ "subscriptionId": "12345",
 "data": [{
 "id": "PropertyX:DT_Y",
 "type": "I4SubmodelElementProperty",
 "Value": {
 "value": 1,
 "type": "Number",
 "metadata": {}
 } }]
}

Return values (depends on the service implemented by the receiving endpoint, but MUST include)

2 https://github.com/telefonicaid/fiware-orion/blob/master/doc/manuals/orion-api.md#notification-messages

23

code 50X Server error

code 200/201 Success (notification received)

3.1.3. Commands’ calling and responses’ retrieval
For each shop floor component listed in D9.1 and D9.2, the corresponding BaSyx HTTP REST API call

INVOKE operation is executed to call (and trigger) each of their sub models’ operations (commands)

defined on its corresponding AAS. The expected responses, mapped as changes on the corresponding

properties, will be also checked.

Figure 9. BaSyx INVOKE HTTP resource to request the execution of Command/Operation P.

Figure 9 represents the flow to request the execution of the Operation P, belonging to an already

defined Digital Twin within the IMS. The SFM a) calls the HTTP POST INVOKE resource offered by the

CoRoSect’s BaSyx module including the “inputVariables” payload; the BaSyx module b) converts the

request into the corresponding NGSI Update command, so the c) IMS can write in the selected

Submodel Element Operation of the DT; with this operation, d) the IMS corresponding connector is

notified and the input parameters are e) sent to the device system server. Once received, the server

f) communicates with the shop floor through the driver to execute the requested command with the

given input variables. During the execution process, g) the driver, and so the system, can update one

or several device’s parameters, which will be properly updated in the DT and communicated to the

SFM following the Asynchronous data sharing previously described. Finally, when the command has

finished, h) the device status is updated and reported in the Asynchronous way.

The SubmodelElement_ID parameter identifies the command (Submodel Element Operation) to be

executed.

INVOKE Operation (Command call)
POST [BaSyx Server]/aas/[AAS_ID]/submodels/[Submodel_ID]/submodel/

submodelElements/[SubmodelElement_ID]/invoke

Headers Fiware-Service Define isolated environments where all defined DTs and datasets are
related. Can refer to e.g a testing environment or map all farm’s
deployed systems

Fiware-ServicePath

24

Payload JSON with required
inputs to execute
the command

{
 "requestId":"0A1B2C3D4", //to track the command
 "timeout": 100,
 "inputArguments": [], //required inputs to execute the command
 "inoutputArguments": []
}

Return values

code 404 AAS and/or Submodel and/or Submodel Element not found

code 50X Server error

code 200/201 Success:

 "Operation invoked successfully"

If the INVOKE operation has been successful, a response (OutputVariable) and/or different status

properties may be updated on the component’s Digital Twin, depending on the implementation (and

execution) of the called command. To read these updates, the following calls can be used.

Retrieve Submodel Element Operation OUTPUT (for Submodel Elements’ OPERATION)
GET [BaSyx Server]/aas/[AAS_ID]/submodels/[Submodel_ID]/

submodel/submodelElements/[SubmodelElement_ID]/output

Headers Fiware-Service Define isolated environments where all defined DTs and datasets are
related. Can refer to e.g a testing environment or map all farm’s
deployed systems

Fiware-ServicePath

Payload No payload

Return values

code 404 AAS and/or Submodel and/or Submodel Element Property not found

code 50X Server error

code 200/201 Success:

 Retrieves JSON object including: outputVariable for the referred operation.

Retrieve Submodel Elements’ VALUES (for Submodel Elements’ PROPERTIES that may changed
with the command request)
GET [BaSyx Server]/aas/[AAS_ID]/submodels/[Submodel_ID]/

submodel/submodelElements/[SubmodelElement_ID]/value

Headers Fiware-Service Define isolated environments where all defined DTs and datasets are
related. Can refer to e.g a testing environment or map all farm’s
deployed systems

Fiware-ServicePath

Payload No payload

Return values

code 404 AAS and/or Submodel and/or Submodel Element Property not found

code 50X Server error

code 200/201 Success:

 Retrieves JSON object including value, valueType and valueId for the referred property.

This BaSyx API endpoint and its REST resources can also be offered to external

applications/information systems, as a RAMI 4.0 interface for further integrations.

Next subsections use the mentioned methods in the current section to query each Digital Twin listed

properties and invoke their supported operations according to their corresponding AAS defined in

D9.1. This way we validate the CoRoSect Integrated system for the next step: CoRoSect Pilots.

25

Important Note: we’ve focused these test cases on the CoRoSect’s pilots and the use cases to be

evaluated. For this purpose, not all properties and operations listed on the mentioned AAS are

mandatory to be implemented, so we enable each device/system for the CoRoSect pilots when all the

required set of properties and operations are properly checked. Any missing (not mandatory) sub-

model element (either property or operation) will be implemented during the progress of the different

pilots.

Important Note: The corresponding IDs refer to the unique identifier defined in the corresponding

Asset Administration Shell (AAS) as "IdShort”.

For properties

Tables in sections 3.2 and beyond check the availability of each of the implemented values, supported

and provided by each of the devices’ servers (either on top of OPC or MQTT) according to their AAS

interfaces by calling the GET Submodel Element API REST resource provided by the BaSyx interface.

HTTP API REST (BaSyx) Retrieve Submodel Elements’ VALUES
GET [BaSyx Server]/aas/DRobot/submodels/[Submodel_Name]/

submodel/submodelElements/[Submodel_Element]/value

Headers Fiware-Service Define isolated environments where all defined DTs and datasets are
related. Can refer to e.g a testing environment or map all farm’s
deployed systems

Fiware-ServicePath

Payload No payload

Return values

code 404 AAS and/or Submodel and/or Submodel Element/ID Property not found

code 50X Server error

code 200/201 Success:

 Retrieves JSON object including value, valueType and valueId for the referred property.

Tables present a column to reflect if each listed property is supported by its simulator (in case the

device provides a simulator) and another column to verify if the property is supported by (and has

been properly read from) the real device.

3.2. Stacking/De-staking Robot (D-Robot) validation
Staking/De-staking Robot (D-Robot) (Figure 10) is consisted of a Kuka KR70 robotic arm, a Schunk

PSH52 gripper and a camera (for visual and reliable control purposes). This is further detailed in D9.2.

Figure 10. D-Robot integration scenario

26

D-Robot works with OPC-UA and implements its own OPC-UA Server to support its full D9.1 defined

AAS. Robotnik provides (and supports) this OPC-UA server and also a D-Robot OPC-UA simulator, used

to test the proper OPC-UA connectivity.

3.2.1. Properties’ integration tests
These tests (Table 1) use the Synchronous Query/Retrieve process (Figure 7) to validate the D-Robot

data uploading process and data availability through the IMS. Retrieving times are indicative (as they

vary from one request to another) and represents the average time after having performed several

requests. These times refer to the CoRoSect’s cloud instance.

Table 1. Properties’ availability tests for D-Robot

AAS: SUBMODEL Simulator Real Device/System

DRobot Name Element Read Read
Retrieving

time

D
A

TA
 (

P
ro

p
er

ti
es

)

V
al

u
es

A
ss

et
C

o
n

d
it

io
n

M
o

n
it

o
ri

n
g

RobotMovementStatus Checked Checked 396 ms

Status Checked Checked 396 ms

GripperObjectHeld Not Supported
Not
Implemented

TaskStatus Checked Checked 396 ms

TaskID Checked Checked 396 ms

DRobotCobotWorkspaceFree Not Supported Checked 396 ms

DRobotAGVSharedWorkspaceFree Not Supported
Not
Implemented

Te
ch

n
ic

al
D

at
a GeneralTasksConfigured Checked Checked 396 ms

SpecificTasksConfigured Checked Checked 280 ms

StatusConfigured Checked Checked 280 ms

RobotMovementStatusConfigured Checked Checked 280 ms

TaskStatusConfigured Checked Under Review

N
am

ep
la

te

ManufacturerName Checked Checked 266 ms

ManufacturerProductDesignation Checked Checked 266 ms

Country code Checked Checked 266 ms

Street Checked Checked 266 ms

Zip Checked Checked 266 ms

CityTown Checked Checked 266 ms

StateCounty Checked Checked 266 ms

ManufacturerProductFamily Checked Checked 266 ms

YearOfConstruction Checked Checked 266 ms

SerialNumber Checked Checked 266 ms

ClassificationSystem Checked Checked 266 ms

DateOfManufacture Checked Checked 266 ms

ProductCountryOfOrigin Checked Checked 266 ms

QrCode Checked Checked 266 ms

ProductIdentifier Checked Checked 266 ms

27

3.2.2. Operations’ triggering tests
These tests (Table 2 to Table 7) use the INVOKE HTTP process (Figure 9) to validate the D-Robot

connectivity with the Shop Floor Manager. This validates the availability of the D-Robot to be

commanded by the SFM and fully integrated with the CoRoSect MES. Retrieving times are indicative

(as they vary from one request to another) and represents the average time after having performed

several requests. These times refer to the CoRoSect’s cloud instance.

Table 2. List of supported commands from D-Robot AAS

AAS: SUBMODEL
Simulator Real Device/System

DRobot Name Element

COMMANDS
(Operations)

O
p

er
at

io
n

al
C

ap
ab

ili
ti

es
 ExecuteGeneralTask Supported Supported

DeStackCrate Supported Supported

StackCrate Supported Supported

StopOperation Not Supported Not Implemented

ResumeOperation Not Supported Not Implemented

ReturnErrorStack Not Supported Not Implemented

EmergencyStop Supported Supported

InitializeCell Supported Supported

Table 3. ExecuteGeneralTask command test for D-Robot

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element ExecutegeneralTask

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/DRobot/submodels/OperationalCapability/
submodel/submodelElements/ExecuteGeneralTask/invoke

InputVariable "inputVariable": [{"value": 1,"idShort": "TaskID"}]

Output Simulator Real Device/System

R
e

su
lt

s

"operationResult": {
 "success": true,
 "isException": false
 },
 "outputVariable": [{
 "value": true
 }]

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

AssetConditionMonitoring.TaskID Checked ID of the Op (100)

AssetConditionMonitoring.TaskStatus Checked Status: (1 [Exec])- 2
[Success] – 3 [Fail]

 AssetConditionMonitoring.RobotMovementStatus Checked 0 (moving) 1(stopped)
2(emergency stop)

AssetConditionMonitoring.DRobotCobotWorkspaceFree Checked 0/1 (in/out manipulation
zone)

Er
ro

rs

Description Command’s failure (Robot failure)

Checked Checked Output
Result

"operationResult": {
 "success": false,
 "isException": true
 }

28

Table 4. DeStackCrate command test for D-Robot
C

O
M

M
A

N
D

S
(O

p
e

ra
ti

o
n

s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element DeStackCrate

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/DRobot/submodels/OperationalCapability/
submodel/submodelElements/DeStackCrate/invoke

InputVariable

"inputVariable": [{
 "value": {"x": 0, "y": 0, "z": 0},
 "idShort": "CrateLocation"
 }]

Output Simulator Real Device/System

R
e

su
lt

s

"operationResult": {
 "success": true,
 "isException": false
 },
 "outputVariable": [{
 "value": true
 }]

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

AssetConditionMonitoring. TaskID
Checked ID of the Op (102)

AssetConditionMonitoring. TaskStatus Checked Status: (1 [Exec])- 2
[Success] – 3 [Fail]

 AssetConditionMonitoring. RobotMovementStatus Checked 0 (moving) 1(stopped)
2(emergency stop)

AssetConditionMonitoring. DRobotCobotWorkspaceFree Checked 0/1 (in/out manipulation
zone)

Er
ro

rs

Description Command’s failure (Robot failure)

Checked Checked Output
Result

"operationResult": {
 "success": false,
 "isException": true
 }

Table 5. StackCrate command test for D-Robot

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element StackCrate

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/DRobot/submodels/OperationalCapability/
submodel/submodelElements/StackCrate/invoke

InputVariable

"inputVariable": [{
 "value": {"x": 0, "y": 0, "z": 0},
 "idShort": "CrateLocation"
 }]

Output Simulator Real Device/System

R
e

su
lt

s

"operationResult": {
 "success": true,
 "isException": false
 },
 "outputVariable": [{
 "value": true
 }]

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

AssetConditionMonitoring. TaskID
Checked ID of the Op (101)

AssetConditionMonitoring. TaskStatus Checked Status: (1 [Exec])- 2
[Success] – 3 [Fail]

 AssetConditionMonitoring. RobotMovementStatus Checked 0 (moving) 1(stopped)
2(emergency stop)

AssetConditionMonitoring. DRobotCobotWorkspaceFree Checked 0/1 (in/out manipulation
zone)

Er
r

o
r

s Description Command’s failure (Robot failure) Checked Checked

29

Output
Result

"operationResult": {
 "success": false,
 "isException": true
 }

Table 6. EmergencyStop command test for D-Robot

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element EmergencyStop

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/DRobot/submodels/OperationalCapability/
submodel/submodelElements/EmergencyStop/invoke

InputVariable

"inputVariable": [{
 "value": "None",
 "idShort": "None",
 "descriptions": [
 {"language": "en",
 "text": "No input required for Emergency Stop"}
] }]

Output Simulator Real Device/System

R
e

su
lt

s

"operationResult": {
 "success": true,
 "isException": false
 },
 "outputVariable": [{
 "value": true
 }]

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

AssetConditionMonitoring. TaskID
Checked ID of the Op (105)

AssetConditionMonitoring. TaskStatus Checked Status: (1 [Exec])- 2
[Success] – 3 [Fail]

 AssetConditionMonitoring. RobotMovementStatus Checked 2 (emergency stop)

AssetConditionMonitoring. DRobotCobotWorkspaceFree Checked 0/1 (in/out manipulation
zone)

Er
ro

rs

Description Command’s failure (Robot failure)

Checked Checked Output
Result

"operationResult": {
 "success": false,
 "isException": true
 }

Table 7. InitializeCell command test for D-Robot

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element InitializeCell

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/DRobot/submodels/OperationalCapability/
submodel/submodelElements/InitializeCell/invoke

InputVariable

"inputVariable": [{
 "value": {"x": 2, "y": 2, "z": 1},
 "idShort": "GridDescription"
 }]

Output Simulator Real Device/System

R
e

su
lt

s

"operationResult": {
 "success": true,
 "isException": false
 },
 "outputVariable": [{
 "value": true

Checked Checked

30

 }]

P
ro

p
er

ti
es

u
p

d
at

ed

AssetConditionMonitoring. TaskID
Checked ID of the Op (106)

AssetConditionMonitoring. TaskStatus Checked Status: (1 [Exec])- 2
[Success] – 3 [Fail]

Er
ro

rs

Description Command’s failure (Robot failure)

Checked Checked Output
Result

"operationResult": {
 "success": false,
 "isException": true
 }

3.3. Manipulation Robot + Visual Inspection module (M-RobotVI)
The Manipulation Robot (M-Robot), provided by UM, includes a Visual Inspection Module supported

by CERTH and so conform the Manipulation and Visual Inspection Robot (M-RobotVI) (Figure 11). It is

composed by a Kuka LBR iiwa14 R820 robotic arm with the corresponding gripper and tools and a set

of industrial cameras connected through USB port to the robot controller. This is further detailed in

D9.2.

Figure 11. M-RobotVI integration scenario

M-RobotVI set works using an integrated OPC-UA server that brings together and exposes all the

properties and operations from both systems.

3.3.1. Properties’ integration tests
These tests (Table 8) use the Synchronous Query/Retrieve process (Figure 7) to validate the M-RobotVI

data uploading process and data availability through the IMS. Retrieving times are indicative (as they

vary from one request to another) and represents the average time after having performed several

requests. These time measurements refer to the CoRoSect’s cloud instance. The M-RobotVI set

doesn’t provide a simulation testbed, so all tests have been done against the real devices.

Table 8. Properties’ availability tests for M-RobotVI

AAS: SUBMODEL Simulator Real Device/System

MRobotVI Name Element Read Read
Retrieving

time

D
A

TA

(P
ro

p
er

ti
es

)
V

al
u

es

O
p

er
at

io
n

al
D

at
a

VIResults Not Supported Checked 322 ms

31

A
ss

et
C

o
n

d
it

io
n

M
o

n
it

o
ri

n
g

MRobotMovementStatus Not Supported Checked 307 ms

MRobotStatus Not Supported Checked 307 ms

MRobotObjectHeld Not Supported
Not
Implemented

MRobotTaskStatus Not Supported Checked 307 ms

MRobotTaskID Not Supported Checked 307 ms

VITaskStatus Not Supported Checked 307 ms

VITaskID Not Supported Checked 307 ms

VIStatus Not Supported Checked 307 ms

CobotDRobotWorkspaceFree Not Supported Checked 307 ms

Te
ch

n
ic

al
D

at
a

MRobotTaskConfigured Not Supported Checked 296 ms

MRobotMovementStatusConfigured Not Supported Checked 296 ms

VIConfiguredInspectionType Not Supported Checked 296 ms

VIConfiguredFarmType Not Supported Checked 296 ms

VIConfiguredDOL Not Supported Checked 296 ms

StatusConfigured Not Supported
Not
Implemented

TaskStatusConfigured Not Supported
Not
Implemented

N
am

ep
la

te

ManufacturerName Not Supported
Not
Implemented

ManufacturerProductDesignation Not Supported
Not
Implemented

Country code Not Supported
Not
Implemented

Street Not Supported
Not
Implemented

Zip Not Supported
Not
Implemented

CityTown Not Supported
Not
Implemented

StateCounty Not Supported
Not
Implemented

ManufacturerProductFamily Not Supported
Not
Implemented

YearOfConstruction Not Supported
Not
Implemented

SerialNumber Not Supported Checked 296 ms

ClassificationSystem Not Supported
Not
Implemented

DateOfManufacture Not Supported
Not
Implemented

ProductCountryOfOrigin Not Supported
Not
Implemented

QrCode Not Supported
Not
Implemented

ProductIdentifier Not Supported
Not
Implemented

3.3.2. Operations’ triggering tests
These tests (Table 9 to Table 11) use the INVOKE HTTP process (Figure 9) to validate the M-Robot and

its attached Visualization Module (M-RobotVI) connectivity with the Shop Floor Manager. This

validates the availability of the M-Robot to be commanded by the SFM and fully integrated with the

CoRoSect MES.

32

Table 9. List of supported commands from M-RobotVI AAS

AAS: SUBMODEL
Simulator Real Device/System

MRobotVI Name Element

COMMANDS
(Operations)

O
p

er
at

io
n

al
C

ap
ab

ili
ti

es
 MRobotExecuteTask Not Supported Validated

MRobotStop Not Supported Implemented/Not Tested

MRobotResume Not Supported Implemented/Not Tested

MRobotReturnErrorStack Not Supported Implemented/Not Tested

MRobotEmergencyStop Not Supported Implemented/Not Tested

VIStart Not Supported Validated

VIStop Not Supported Implemented/Not Tested

VIReturnErrorStack Not Supported Not Implemented

VIHistData Not Supported Not Implemented

Table 10. MRobotExecuteTask command test for M-RobotVI

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element MRobotExecuteTask

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/MRobotVI/submodels/OperationalCapability
/submodel/submodelElements/MRobotExecuteTask/invoke

InputVariable

{"idShort":"TaskID",
 "value":1,
 "descriptions":[
 {"language":"en",
 "text":"To give the task id to be executed”}
]}

Output Simulator Real Device/System

R
e

su
lt

s

"operationResult": {
 "success": true,
 "isException": false
 }

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

AssetConditionMonitoring. MRobotTaskID Checked ID of the Op (105)

AssetConditionMonitoring.MRobotTaskStatus Checked Status: (1 [Exec])- 2
[Success] – 3 [Fail]

AssetConditionMonitoring.MRobotStatus Checked
Status: (1 [Exec])- 2
[Success] – 3 [Fail]

 AssetConditionMonitoring. MRobotMovementStatus Checked 0 (moving) 1(stopped)
2(emergency stop)

AssetConditionMonitoring. CobotDRobotWorkspaceFree Checked 0/1 (in/out manipulation
zone)

Er
ro

rs

Description Command’s failure (Robot failure)

Checked Checked
Output Result

"operationResult": {
 "success": false,
 "isException": true
 }

Table 11. VIStart command test for M-RobotVI

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O

p
e

ra
ti

o
n

al

C
ap

ab
ili

ty

Submodel Element VIStart

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/MRobotVI/submodels/OperationalCapabili
ty/submodel/submodelElements/VIStart/invoke

InputVariable
[{
 "idShort":"InspectionType",
 "value":0,

33

 "descriptions":[{
 "language":"en",
 "text":"Determines which inspections should be
executed"}},
 {
 "idShort":"Farm",
 "value":0,
 "descriptions":[{
 "language":"en",
 "text":"Specify which farm`s crate"}]},
 {
 "idShort":"CrateID",
 "value":0,
 "descriptions":[{
 "language":"en",
 "text":"Specify which unique crate in particular"}]},
 {
 "idShort":"DOL",
 "value":0,
 "descriptions":[{
 "language":"en",
 "text":"Day of living of the insects"}]},
 {
 "idShort":"DateTime",
 "value":" ",
 "descriptions":[{
 "language":"en",
 "text":"Alignment with systems [MES] datetime"
 }]
 }]

Output Simulator Real Device/System

R
e

su
lt

s

"operationResult": {
 "success": true,
 "isException": false
 }

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed
 AssetConditionMonitoring.VITaskStatus Checked 0 Start – 1 Stop

AssetConditionMonitoring.VITaskID Checked ID numbering the Insp.
Action

AssetConditionMonitoring.VIStatus Checked 0-1-2-3

 OperationalData.VIResults Checked Visual Insp. Results

Er
ro

rs

Description Command’s failure (Robot failure)

Checked Checked
Output Result

"operationResult": {
 "success": false,
 "isException": true
 }

3.4. Intelligent Crates (I-Crates)
The OAMK Intelligent Crates (I-Crate) (Figure 12) is composed by a set of sensors (temperature,

humidity, PH, NH3, CO2, moisture) collecting and sending data of the insects’ crate where they’re

attached to. This is further detailed in D9.2.

34

Figure 12. I-Crate integration scenario

The I-Crate works using MQTT protocol to send all sensors’ data, plus its context (location, description

information, etc.) to the CoRoSect’s IMS. Each I-Crate uses a BT 5.2 module to connect to the crates

Gateway. This GW gathers the data from all i-Crates and publishes it on the IMS MQTT Broker. These

devices ONLY collect and update information, so no commands’ flows are implemented.

3.4.1. Properties’ integration tests
These tests (Table 12) use the Synchronous Query/Retrieve process (Figure 7) to validate the I-Crate

data uploading process and data availability through the IMS. These tests are done with the OAMK’s

prototype connected to the CoRoSect’s cloud instance. This prototype will be later replicated in the

corresponding pilots’ farms. Retrieving times are indicative (as they vary from one request to another)

and represents the average time after having performed several requests. These times refer to the

CoRoSect’s cloud instance.

Table 12. Properties’ availability tests for I-Crate device

AAS: SUBMODEL Simulator Real Device/System

iCrate Name Element Read Read
Retrieving

time

D
A

TA
 (

P
ro

p
er

ti
es

)

V
al

u
es

O
p

er
at

io
n

al
D

at
a

TemperatureMeasure Checked Checked 311 ms

TemperatureTimestamp Checked Checked 311 ms

HumidityMeasure Checked Checked 311 ms

HumidityTimestamp Checked Checked 311 ms

CO2Measure Checked Checked 311 ms

CO2Timestamp Checked Checked 311 ms

MoistureMeasure Checked Checked 311 ms

MoistureTimestamp Checked Checked 311 ms

NH3Measure Checked Checked 311 ms

NH3Timestamp Checked Checked 311 ms

PHMeasure Checked Checked 311 ms

PHTimestamp Checked Checked 311 ms

ICrateLocation Checked Checked 311 ms

TemperatureSensorLocation Checked Checked 311 ms

HumiditySensorLocation Checked Checked 311 ms

CO2SensorLocation Checked Checked 311 ms

MoistureSensorLocation Checked Checked 311 ms

35

NH3SensorLocation Checked Checked 311 ms

PHSensorLocation Checked Checked 311 ms

A
ss

et
C

o
n

d
it

io
n

M
o

n
it

o
ri

n
g

TemperatureSensorStatus Checked Not
Implemented

HumiditySensorStatus Checked Not
Implemented

CO2SensorStatus Checked Not
Implemented

MoistureSensorStatus Checked Not
Implemented

NH3SensorStatus Checked Not
Implemented

PHSensorStatus Checked Not
Implemented

TemperatureSensorBatteryLevel Checked Not
Implemented

HumiditySensorBatteryLevel Checked Not
Implemented

CO2SensorBatteryLevel Checked Not
Implemented

MoistureSensorBatteryLevel Checked Not
Implemented

NH3SensorBatteryLevel Checked Not
Implemented

PHSensorBatteryLevel Checked Not
Implemented

TemperatureSensorTransmissionReliability Checked Not
Implemented

HumiditySensorTransmissionReliability Checked Not
Implemented

CO2SensorTransmissionReliability Checked Not
Implemented

MoistureSensorTransmissionReliability Checked Not
Implemented

NH3SensorTransmissionReliability Checked Not
Implemented

PHSensorTransmissionReliability Checked Not
Implemented

N
am

ep
la

te

ManufacturerName Checked Not
Implemented

ManufacturerProductDesignation Checked Not
Implemented

Country code Checked Not
Implemented

Street Checked Not
Implemented

Zip Checked Not
Implemented

CityTown Checked Not
Implemented

StateCounty Checked Not
Implemented

ManufacturerProductFamily Checked Not
Implemented

YearOfConstruction Checked Not
Implemented

SerialNumber Checked Checked 443 ms

ClassificationSystem Checked Not
Implemented

DateOfManufacture Checked Not
Implemented

36

ProductCountryOfOrigin Checked Not
Implemented

QrCode Checked Not
Implemented

ProductIdentifier Checked Checked 336 ms

B
ill

O
fM

at
er

ia
l

TemperatureSensorSensorIdentifiers
Not
Supported

Not
Implemented

HumiditySensorSensorIdentifiers
Not
Supported

Not
Implemented

CO2SensorSensorIdentifiers
Not
Supported

Not
Implemented

MoistureSensorSensorIdentifiers
Not
Supported

Not
Implemented

NH3SensorSensorIdentifiers
Not
Supported

Not
Implemented

PHSensorSensorIdentifiers
Not
Supported

Not
Implemented

R
an

ge
s

Te
ch

n
ic

al
D

at
a

TemperatureSensorRange
Not
Supported

Not
Implemented

HumiditySensorRange
Not
Supported

Not
Implemented

CO2SensorRange
Not
Supported

Not
Implemented

MoistureSensorRange
Not
Supported

Not
Implemented

NH3SensorRange
Not
Supported

Not
Implemented

PHSensorRange
Not
Supported

Not
Implemented

TemperatureSensorMeasurementInterval
Not
Supported

Not
Implemented

HumiditySensorMeasurementInterval
Not
Supported

Not
Implemented

CO2SensorMeasurementInterval
Not
Supported

Not
Implemented

MoistureSensorMeasurementInterval
Not
Supported

Not
Implemented

NH3SensorMeasurementInterval
Not
Supported

Not
Implemented

PHSensorMeasurementInterval
Not
Supported

Not
Implemented

3.5. Automated Guided Vehicle (AGV)
The Automated Guided Vehicle (AGV) system (Figure 13) includes the vehicle itself plus the embedded

module which implements VDA5050 wireless protocol over WiFi to share information and receive

commands. This is further detailed in D9.2.

Figure 13. AGV integration with IMS scenario

37

The AGV system uses the IMS MQTT interface to communicate with CoRoSect’s MES. Same interface

(the IMS MQTT Broker) is used by the AGV for direct communications with the Route Manager and

the Objects’ detector.

3.5.1. Properties’ integration tests
These tests (Table 13) use the Synchronous Query/Retrieve process (Figure 7) to validate the AGV data

uploading process and data availability through the IMS. Retrieving times are indicative (as they vary

from one request to another) and represents the average time after having performed several

requests. These times refer to the CoRoSect’s cloud instance.

Table 13. Properties’ availability tests for AGV device

AAS: SUBMODEL Simulator Real Device/System

AGV Name Element Read Read
Retrieving

time

D
A

TA
 (

P
ro

p
er

ti
es

)

V
al

u
es

A
ss

et
C

o
n

d
it

io
n

M
o

n
it

o
ri

n
g

Status Checked Checked 336 ms

ConnectionState Checked
Not
Implemented

BatteryState Checked
Not
Implemented

BatteryCharge Checked
Not
Implemented

BatteryVoltage Checked Checked 336 ms

BatteryHealth Checked Checked 336 ms

Charging Checked Checked 336 ms

Reach Not Supported
Not
Implemented

OperatingMode Checked Checked 336 ms

Errors Checked
Not
Implemented

ErrorType Checked
Not
Implemented

ErrorReferences Checked
Not
Implemented

Driving Checked Checked 336 ms

Paused Checked Checked 336 ms

SafetyState Checked
Not
Implemented

Estop Checked
Not
Implemented

FieldViolation Checked Checked 396 ms

Te
ch

n
ic

al
D

at
a

ActionStateConfigured Checked Checked 396 ms

OperatingModeConfigured Checked Checked 396 ms

StatusConfigured Not Supported
Not
Implemented

EStopConfigured Not Supported
Not
Implemented

ConnectionStateConfigured Not Supported
Not
Implemented

N
am

ep
la

te

ManufacturerName Checked
Not
Implemented

ManufacturerProductDesignation Checked
Not
Implemented

Country code Checked
Not
Implemented

Street Checked
Not
Implemented

Zip Checked
Not
Implemented

38

CityTown Checked
Not
Implemented

StateCounty Checked
Not
Implemented

ManufacturerProductFamily Checked
Not
Implemented

YearOfConstruction Checked
Not
Implemented

SerialNumber Checked
Not
Implemented

ClassificationSystem Checked
Not
Implemented

DateOfManufacture Checked
Not
Implemented

ProductCountryOfOrigin Checked
Not
Implemented

QrCode Checked
Not
Implemented

ProductIdentifier Checked
Not
Implemented

O
p

er
at

io
n

al
D

at
a

OrderId Checked Checked 406 ms

OrderUpdateId Checked Checked 406 ms

ZoneSetId Checked Checked 406 ms

LastNodeId Checked Checked 406 ms

LastNodeSequenceId Checked Checked 406 ms

NodeStates Checked
Not
Implemented

NodeId Checked
Not
Implemented

NodeSequenceId Checked
Not
Implemented

NodeDescription Checked
Not
Implemented

NodePosition Checked
Not
Implemented

x_AGVPosition Checked Checked 406 ms

y_AGVPosition Checked Checked 406 ms

Theta_AGVPosition Checked Checked 406 ms

AllowedDeviationXY Checked
Not
Implemented

AllowedDeviationTheta Checked
Not
Implemented

Nodereleased Checked
Not
Implemented

EdgeStates Not Supported
Not
Implemented

EdgeId Not Supported
Not
Implemented

EdgesequenceId Not Supported
Not
Implemented

EdgeDescription Not Supported
Not
Implemented

Edgereleased Not Supported
Not
Implemented

Trajectory Not Supported
Not
Implemented

Degree Not Supported
Not
Implemented

KnotVector Not Supported
Not
Implemented

ControlPoints Not Supported
Not
Implemented

39

AgvPosition Not Supported
Not
Implemented

PositionInitialized Not Supported
Not
Implemented

LocalizationScore Checked Checked 406 ms

DeviationRange Not Supported
Not
Implemented

MapId Checked Checked 406 ms

MapDesc Checked Checked 406 ms

Velocity Not Supported
Not
Implemented

Vx Checked Checked 406 ms

Vy Checked Checked 406 ms

Omega Checked Checked 406 ms

Loads Checked
Not
Implemented

LoadId Checked Checked 406 ms

LoadType Checked Checked 406 ms

LoadPosition Checked
Not
Implemented

BoundingBoxReference Not Supported
Not
Implemented

LoadDimensions Not Supported
Not
Implemented

Length Not Supported
Not
Implemented

Width Not Supported
Not
Implemented

Height Not Supported
Not
Implemented

Weight Not Supported
Not
Implemented

NewBaseRequest Checked Checked 406 ms

DistanceSinceLastNode Checked Checked 406 ms

ActionStates Checked
Not
Implemented

Actionid Checked
Not
Implemented

ActionType Checked
Not
Implemented

ActionDescription Checked
Not
Implemented

Drop_ActionStatus Checked Checked 406 ms

Pick_ResultDescription Checked Checked 406 ms

Drop_ResultDescription Checked Checked 406 ms

Pick_ActionStatus Checked Checked 406 ms

StopPause_ActionStatus Checked Checked 406 ms

CancelOrder_ActionStatus Checked Checked 406 ms

StopPause_ResultDescription Checked Checked 406 ms

StartPause_ResultDescription Checked Checked 406 ms

StartPause_ActionStatus Checked Checked 406 ms

CancelOrder_ResultDescription Checked Checked 406 ms

40

3.5.2. Operations’ triggering tests
These tests (Table 14 to Table 19) use the INVOKE HTTP process (Figure 9) to validate the AGV

connectivity with the Shop Floor Manager. This validates the availability of the AGV to be commanded

by the SFM and fully integrated with the CoRoSect MES.

Table 14. List of supported commands for AGV AAS

AAS: SUBMODEL
Simulator Real Device/System

AGV1 Name Element

COMMANDS
(Operations)

O
p

er
at

io
n

al
C

ap
ab

ili
ti

es

StartPause Supported Validated

StopPause Supported Validated

StartCharging Supported Not Implemented

StopCharging Supported Not Implemented

InitPosition Supported Not Implemented

StateRequest Not Supported Not Implemented

LogReport Not Supported Not Implemented

Pick Supported Validated

Drop Supported Validated

DetectObject Not Supported Not Implemented

FinePositioning Not Supported Not Implemented

WaitForTrigger Not Supported Not Implemented

CancelOrder Supported Validated

Table 15. StartPause command test for AGV

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element StartPause

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/AGV1/submodels/OperationalCapability/su
bmodel/submodelElements/StartPause/invoke

InputVariable none

Output Simulator Real Device/System

R
e

su
lt

s

{
 "idShort": "CommandStatus",
 "value": "",
 "descriptions": [{
 "language": "en",
 "text": "Status of the output of start paused"
 }]}

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

OperationalData.StartPause_ActionStatus Checked

0 (Waiting);
1 (initializing);
2 (running);
3 (paused);
4 (finished);
5 (failed)

Er
ro

rs
 Description Command’s failure (AGV failure)

Checked Checked
Output Result

 "operationResult": {
 "success": false,
 "isException": true}

41

Table 16. StopPause command test for AGV
C

O
M

M
A

N
D

S
(O

p
e

ra
ti

o
n

s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element StopPause

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/AGV1/submodels/OperationalCapability/su
bmodel/submodelElements/StopPause/invoke

InputVariable none

Output Simulator Real Device/System

R
e

su
lt

s

{
 "idShort": "CommandStatus",
 "value": "",
 "descriptions": [{
 "language": "en",
 "text": "Status of the output of stop paused"
 }]}

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

OperationalData.StopPause_ActionStatus Checked

0 (Waiting);
1 (initializing);
2 (running);
3 (paused);
4 (finished);
5 (failed)

Er
ro

rs
 Description Command’s failure (AGV failure)

Checked Checked
Output Result

 "operationResult": {
 "success": false,
 "isException": true}

Table 17. Pick command test for AGV

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element pick

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/AGV1/submodels/OperationalCapability/su
bmodel/submodelElements/pick/invoke

InputVariable

[{"idShort":"loadType","value":"EURO"},
{"idShort":"loadId","value":"1"},
{"idShort":"height","value":"0"},
{"idShort":"depth","value":"0"},
{"idShort":"side","value":"0"}]

Output Simulator Real Device/System

R
e

su
lt

s

{"idShort": "CommandStatus",
 "descriptions": [
 {"language": "en",
 "text": "Status of the output of pick"
 }],"value": "1"}

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

OperationalData.Pick_ActionStatus Checked

0 (Waiting);
1 (initializing);
2 (running);
3 (paused);
4 (finished);
5 (failed)

Er
ro

rs
 Description

Command’s failure (AGV
failure)

Checked Checked

Output Results
 "operationResult": {
 "success": false,
 "isException": true}

42

Table 18. Drop command test for AGV
C

O
M

M
A

N
D

S
(O

p
e

ra
ti

o
n

s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element drop

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/AGV1/submodels/OperationalCapability/su
bmodel/submodelElements/drop/invoke

InputVariable

[{"idShort":"loadType","value":"EURO"},
{"idShort":"loadId","value":"1"},
{"idShort":"height","value":"0"},
{"idShort":"depth","value":"0"},
{"idShort":"side","value":"0"}]

Output Simulator Real Device/System

R
e

su
lt

s

{"idShort": "CommandStatus",
 "descriptions": [
 {"language": "en",
 "text": "Status of the output of drop"
 }],"value": "1"}

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

OperationalData.Drop_ActionStatus Checked

0 (Waiting);
1 (initializing);
2 (running);
3 (paused);
4 (finished);
5 (failed)

Er
ro

rs
 Description Command’s failure (AGV failure)

Checked Checked Output
Results

 "operationResult": {
 "success": false,
 "isException": true}

Table 19. CancelOrder command test for AGV

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element CancelOrder

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/AGV1/submodels/OperationalCapability/su
bmodel/submodelElements/CancelOrder/invoke

InputVariable none

 Output Simulator Real Device/System

R
e

su
lt

s

{"idShort": "CommandStatus",
 "descriptions": [
 {"language": "en",
 "text": "Status of the output of Cancel Order"
 }],"value": "1"}

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

OperationalData.CancelOrder_ActionStatus Checked

0 (Waiting);
1 (initializing);
2 (running);
3 (paused);
4 (finished);
5 (failed)

OperationalData.Pick/Drop_ActionStatus Checked
 From 2 (running) to 4

(finished)

OperationalData.StarPause/StopPause_ActionStatus Checked
 From 2 (running) to 4

(finished)

Er
ro

rs
 Description Command’s failure (AGV failure)

Checked Checked
Output
Results

 "operationResult": {
 "success": false,
 "isException": true}

43

3.6. HoloLens System
Microsoft’s HoloLens 2 (HoloLens) provides a see-through-based augmented reality system used

within the human-robot collaboration scenario. This (Figure 14) includes the Microsoft device plus a

specifically designed OPC interface to integrate it with the IMS. This is further detailed in D9.2.

Figure 14. HoloLens’ device integration scenario

3.6.1. Properties’ integration tests
These tests (Table 20) use the Synchronous Query/Retrieve process (Figure 7) to validate the HoloLens

device data uploading process and data availability through the IMS. The HoloLens does not provide a

simulator for data retrieving, so all reading tests are done using the real device. Retrieving times are

indicative (as they vary from one request to another) and represents the average time after having

performed several requests. These times refer to the CoRoSect’s cloud instance.

Table 20. Properties’ availability tests for HoloLens device

AAS: SUBMODEL Simulator Real Device/System

HOLOLENS Name Element Read Read
Retrieving

time

D
A

TA
 (

P
ro

p
er

ti
es

)

V
al

u
es

A
ss

et
C

o
n

d
it

io
n

M
o

n
it

o
ri

n
g

Status Not Supported
Not
Implemented

DisplayStopped Not Supported Checked 226 ms

Te
ch

n
ic

al
D

at
a

ConfiguredAssets Not Supported Checked 226 ms

StatusConfiguration Not Supported Checked 226 ms

MessagesConfiguration Not Supported Checked 226 ms

N
am

ep
la

te

ManufacturerName Not Supported Checked 293 ms

ManufacturerProductDesignation Not Supported Checked 293 ms

Country code Not Supported Checked 293 ms

Street Not Supported Checked 293 ms

Zip Not Supported Checked 293 ms

CityTown Not Supported Checked 293 ms

StateCounty Not Supported Checked 293 ms

ManufacturerProductFamily Not Supported Checked 293 ms

YearOfConstruction Not Supported Checked 293 ms

SerialNumber Not Supported Checked 293 ms

ClassificationSystem Not Supported Checked 293 ms

44

DateOfManufacture Not Supported Checked 293 ms

ProductCountryOfOrigin Not Supported Checked 293 ms

QrCode Not Supported
Not
Implemented

ProductIdentifier Not Supported Checked 293 ms

3.6.2. Operations’ triggering tests
These tests (Table 21 to Table 25) use the INVOKE HTTP process (Figure 9) to validate the HoloLens

connectivity with the Shop Floor Manager. This validates the availability of the HoloLens to interact

with the SFM and fully integrated with the CoRoSect MES.

Table 21. List of supported commands for Hololens’ AAS

AAS: SUBMODEL
Simulator Real Device/System

HOLOLENS Name Element

COMMANDS
(Operations)

O
p

er
at

io
n

al
C

ap
ab

ili
ti

es
 DisplayMessage Supported Validated

DisplayTrajectory Supported Validated

StopDisplayMessage Supported Validated

StopDisplayTrajectory Supported Validated

ReturnStackError Not Supported Not Implemented

Table 22. DisplayMessage command test for HoloLens

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element DisplayMessage

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/Hololens/submodels/OperationalCapability
/submodel/submodelElements/DisplayMessage/invoke

InputVariable
"inputVariable": [
 {"idShort": "AssetID","value": 1},
 {"idShort": "MessageID","value": 1}]

Output Simulator Real Device/System

R
e

su
lt

s

"operationResult": {
 "success": true,
 "isException": false},
 "outputVariable": [
 {"value": true}]

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

AssetConditioningMonitoring.
DisplayStopped

Checked True –> False

Er
ro

rs
 Description Command’s failure (HoloLens failure)

Checked Checked Output
Results

 "operationResult": {
 "success": false,
 "isException": true}

Table 23. DisplayTrajectory command test for HoloLens

C
O

M
M

A

N
D

S

(O
p

e
ra

ti

o
n

s)

O
p

e
ra

ti
o

n
al

C
ap

ab
ili

t

y

Submodel Element DisplayTrajectory

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/Hololens/submodels/OperationalCapability
/submodel/submodelElements/DisplayTrajectory/invoke

45

InputVariable
"inputVariable": [
 {"idShort": "AssetID","value": 1},
 {"idShort": "TrajectoryID","value": 1}]

Output Simulator Real Device/System
R

e
su

lt
s

"operationResult": {
 "success": true,
 "isException": false},
 "outputVariable": [
 {"value": true}]

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

AssetConditioningMonitoring.
DisplayStopped

Checked True –> False

Er
ro

rs
 Description Command’s failure (HoloLens failure)

Checked Checked Output
Results

 "operationResult": {
 "success": false,
 "isException": true}

Table 24. StopDisplayMessage command test for HoloLens

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element StopDisplayMessage

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/Hololens/submodels/OperationalCapability
/submodel/submodelElements/StopDisplayMessage/invoke

InputVariable none

Output Simulator Real Device/System

R
e

su
lt

s

"operationResult": {
 "success": true,
 "isException": false},
 "outputVariable": [
 {"value": true}]

Checked Checked

P
ro

p
er

ti
es

u
p

d
at

ed

AssetConditioningMonitoring.
DisplayStopped

Checked False –> True

Er
ro

rs
 Description Command’s failure (HoloLens failure)

Checked Checked Output
Results

 "operationResult": {
 "success": false,
 "isException": true}

Table 25. StopDisplayTrajectory command test for HoloLens

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element StopDisplayTrajectory

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/Hololens/submodels/OperationalCapability
/submodel/submodelElements/StopDisplayTrajectory/invoke

InputVariable none

Output Simulator Real Device/System

R
e

su
lt

s

"operationResult": {
 "success": true,
 "isException": false},
 "outputVariable": [
 {"value": true}]

Checked Checked

46

P
ro

p
er

ti
es

u
p

d
at

ed

AssetConditioningMonitoring.
DisplayStopped

Checked False –> True

Er
ro

rs
 Description Command’s failure (HoloLens failure)

Checked Checked Output
Results

 "operationResult": {
 "success": false,
 "isException": true}

3.7. Route Manager
The Route Manager (RM) software (Figure 15) is deployed in a dedicated server with GPU and uses

the MQTT interface to interact with the IMS and with the AGV using VDA5050. This is further detailed

in D9.2.

Figure 15. Route Manager and MES integration scenario

3.7.1. Properties’ integration tests
These tests (Table 26) use the Synchronous Query/Retrieve process (Figure 7) to validate the Route

Manager data uploading process and data availability through the IMS. Retrieving times are indicative

(as they vary from one request to another) and represents the average time after having performed

several requests. These times refer to the CoRoSect’s cloud instance.

Table 26. Properties’ availability tests for Route Manager device

AAS: SUBMODEL Simulator Real Device/System

RouteManager Name Element Read Read
Retrieving

time

D
A

TA
 (

P
ro

p
er

ti
es

)

V
al

u
es

A
ss

et
C

o
n

d
it

io
n

M
o

n
it

o
ri

n
g Status Checked Checked 319 ms

ErrorMessage Checked Checked 319 ms

InformationSourceforStatus Checked Checked 319 ms

TimeofStatusChange Checked Checked 319 ms

Te
ch

n
ic

al
D

at
a

ActionStateConfigured Checked Checked 205 ms

N
am

ep
la

te
 ManufacturerName Checked Checked 275 ms

ManufacturerProductDesignation Checked Checked 275 ms

Country code Checked Checked 275 ms

Street Checked Checked 275 ms

Zip Checked Checked 275 ms

47

CityTown Checked Checked 275 ms

StateCounty Checked Checked 275 ms

ManufacturerProductFamily Checked Checked 275 ms

YearOfConstruction Checked Checked 275 ms

SerialNumber Checked Checked 275 ms

ClassificationSystem Checked Checked 275 ms

DateOfManufacture Checked Checked 275 ms

ProductCountryOfOrigin Checked Checked 275 ms

QrCode Checked Checked 275 ms

ProductIdentifier Checked Checked 275 ms

O
p

er
at

io
n

al
D

at
a MapPetition Checked Checked 266 ms

RouteStatus Checked Checked 266 ms

3.7.2. Operations’ triggering tests
These tests (Table 27 to Table 30) use the INVOKE HTTP process (Figure 9) to validate the Route

Manager connectivity with the Shop Floor Manager. This validates the availability of the Route

Manager to interact with the SFM and be fully integrated with the CoRoSect MES.

Note: The Route Manager uses MQTT protocol for both: operations and properties. This MQTT

implementation works in a different way that OPC does and the responses (routes) to the invoked

commands are provided within the returned payloads of the responses (OperationResults) and not

through device’s properties.

Table 27. List of supported commands for Route Manager AAS

AAS: SUBMODEL
Simulator Real Device/System

RouteManager Name Element

COMMANDS
(Operations)

O
p

er
at

io
n

al

C
ap

ab
ili

ti
es

 NewRoute Supported Supported

CancelRoute Supported Supported

StartRoute Supported Supported

Table 28. NewRoute command test for RouteManager

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element NewRoute

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/RouteManager/submodels/OperationalCap
ability/submodel/submodelElements/NewRoute/invoke

InputVariable none

Output Simulator Real Device/System

R
e

su
lt

s

[{"idShort": "NewRouteStatus",
 "value": "Valid route from [point55] to
[point4] for [AGV1]."},
 {"idShort": "uuId",
 "value": "c397a78c-d9a3-49cb-82e3-
015489f8e9d7”},

Checked Checked

48

 {"idShort": "TimeStamp",
 "value": "2023-05-
30T15:59:24.616148Z”},
 {"idShort": "rId",
 "value": "b0586173-362c-4846-92c3-
c6b380e254d8"},
 {"idShort": "AGVId",
 "value": "AGV1"}]

Table 29. CancelRoute command test for RouteManager

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element CancelRoute

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/RouteManager/submodels/OperationalCap
ability/submodel/submodelElements/CancelRoute/invoke

InputVariable {"idShort":"rId","value":"all"}

Output Simulator Real Device/System

R
e

su
lt

s

[{"idShort": "CancelStatus",
 "value":"Route rid:all has been
canceled"},
 {"idShort": "uuId",
 "value": "c397a78c-d9a3-49cb-82e3-
015489f8e9d7”},
 {"idShort": "TimeStamp",
 "value": "2023-05-
30T15:59:24.616148Z”},
 {"idShort": "rId",
 "value": "b0586173-362c-4846-92c3-
c6b380e254d8"},
 {"idShort": "AGVId",
 "value": "AGV1"}]

Checked Checked

Table 30. StartRoute command test for RouteManager

C
O

M
M

A
N

D
S

(O
p

e
ra

ti
o

n
s)

O
p

e
ra

ti
o

n
al

 C
ap

ab
ili

ty

Submodel Element StartRoute

INVOKE
operation

REST call (POST)
[BaSyx_Server]/aas/RouteManager/submodels/OperationalCap
ability/submodel/submodelElements/StartRoute/invoke

InputVariable none

Output Simulator Real Device/System

R
e

su
lt

s

[{"idShort": "StartStatus",
 "value":"Route id b71f4d45-03e6-4b96-
9ce2-a85d371172b4 for the AGV AGV1 has
started.""},
 {"idShort": "uuId",
 "value": "c397a78c-d9a3-49cb-82e3-
015489f8e9d7”},
 {"idShort": "TimeStamp",
 "value": "2023-05-
30T15:59:24.616148Z”},
 {"idShort": "rId",
 "value": "b0586173-362c-4846-92c3-
c6b380e254d8"},
 {"idShort": "AGVId",
 "value": "AGV1"}]

Checked Checked

49

3.8. Objects detector
The Objects/Obstacles Detector (OD) system (Figure 16) is composed by a software module plus

several fixed IP cameras, either connected by WiFi or Ethernet cable. This is further detailed in D9.2.

Figure 16. I-Crate integration scenario

The Objects detector system uses the IMS MQTT interface to communicate with CoRoSect’s MES.

Same interface (the IMS MQTT Broker) is used for direct communications with the Route Manager.

3.8.1. Properties’ integration tests
These tests (Table 31) use the Synchronous Query/Retrieve process (Figure 7) to validate the OD data

uploading process and data availability through the IMS. Retrieving times are indicative (as they vary

from one request to another) and represents the average time after having performed several

requests. These times refer to the CoRoSect’s cloud instance.

Table 31. Properties’ availability tests for Objects Detector system

AAS: SUBMODEL Simulator Real Device/System

Object
Detector

Name Element Read Read
Retrieving

time

D
A

TA
 (

P
ro

p
er

ti
es

)

V
al

u
es

A
ss

et
C

o
n

d
it

io
n

M
o

n
it

o
ri

n
g

Status
Checked Checked 289 ms

ErrorMessage Checked Checked 289 ms

InformationSourceforStatus Checked Checked 289 ms

TimeofStatusChange
Checked Checked 289 ms

Te
ch

n
ic

al
D

at
a

StatusConfigured Checked Checked 195 ms

N
am

ep
la

te

ManufacturerName Checked Checked 255 ms

ManufacturerProductDesignation Checked Checked 255 ms

Country code Checked Checked 255 ms

Street Checked Checked 255 ms

Zip Checked Checked 255 ms

CityTown Checked Checked 255 ms

StateCounty Checked Checked 255 ms

ManufacturerProductFamily Checked Checked 255 ms

YearOfConstruction Checked Checked 255 ms

50

SerialNumber Checked Checked 255 ms

ClassificationSystem Checked Checked 255 ms

DateOfManufacture Checked Checked 255 ms

ProductCountryOfOrigin Checked Checked 255 ms

QrCode Checked Checked 255 ms

ProductIdentifier Checked Checked 255 ms
O

p
er

at
io

n
al

D
at

a

InformationSource Checked Checked 224 ms

TimeofDetection Checked Checked 224 ms

DetectionUnqiueId Checked Checked 224 ms

TypeofObstacle Checked Checked 224 ms

DetectedObjectPosition Checked Checked 224 ms

PredictedTrajectory Checked Checked 224 ms

DetectionMessage Checked Checked 224 ms

51

4. Functional tests

Besides the integration of the Shop Floor components and MES building blocks, supporting data and

commands flows, the full CoRoSect System must implement specific functional requirements related

to data management and distribution capabilities. The full list of requirements is shown in D2.4 but

this section tests the historical data storage (for both, properties, and commands) and the data

distribution capabilities (synchronous/asynchronous queries), as the rest of functionalities have been

already evaluated in the previous sections.

4.1. Data gathering, storage and presentation
Section 3 has described the functionalities (APIs) and validated the interfaces used by the IMS to

gather all the information from the shop floor integrated components. Using these validated Digital

Twins structures (sub-models, properties, and operations), the IMS also stores the changes and the

evolution of these parameters through the shop floor execution time, creating a historical data base.

In this sense, the system keeps registries of:

• Any modification done in the registered AAS entities, including new registries and variations

of their attributes.

• Registries and modifications done in the linked asset instances

• Registries and modifications done in the AAS lists of sub-models

• Updates on AAS properties (through the corresponding Submodel Element Properties)

• All commands (Submodel Element Operations) triggered by the Shop Floor Manager through

the BaSyx interface, including the input variables

• All the direct responses (output variables in corresponding Submodel Element Operations)

returned by the corresponding connectors as a response to a requested command.

These historical data storages cover two main system functionalities:

1. Allow tracking and monitoring of:

• The evolution through time of specific properties, such as temperature and humidity

of the shop floor i-crates.

• The commands’ flows during a given time slot, including the monitoring of specific

status properties which reflects the corresponding tasks’ evolution.

2. Create valuable datasets that can be downloaded and exploited by external ERP systems to

evaluate overall shop floor processes (manufacturing processes)

A shown in Figure 17, the IMS implementation offers two different interfaces to provide the historical

datasets to external ERP systems: i) a proper SQL API REST interface, which allows the execution of

Simple Query Language requests; and ii) an NGSI based Time Series API REST to request properties’

evolution according to time.

52

Figure 17. Historical datasets gathering and retrieval schema

4.1.1. Historical data retrieval: SQL Interface
As already introduced in D9.2 and D2.4, the IMS implements an internal Database that provides an

API Rest supporting SQL queries3. The internal structure of tables is based, in turn, on the properties

and operations that define the Digital Twins (D9.1 interfaces) and is to be detailed in D4.3.

Next SQL test queries the last 5 Temperature measures for the hotelli_musta I-Crate deployed in

Italian Cricket Farm pilot (ICF) ordered by the time these where captured. All historical properties for

ICF pilot are stored in the mticf.eti4submodelelementproperty table.

Execute SQL query (_sql REST API) to CoRoSect System IMS
POST [CoRoSect_SQL_Server]/_sql

Headers Fiware-Service No headers required. Queried DB is specified in the payload

Fiware-
ServicePath

Payload JSON with SQL
statement in a
string.

{"stmt":"SELECT time_index as time, entity_id as ID, idshort as PARAM, Value FROM
mticf.eti4submodelelementproperty where idshort = 'TemperatureMeasure' AND refi4aasid like
'%hotelli_musta%' ORDER by time_index DESC LIMIT 5"}

Return values

code 404 AAS and/or Submodel and/or Submodel Element Property not found

code 50X Server error

code 200/201 Success: retrieves JSON object including columns’ names and rows data retrieved

 {
 "cols": ["time", "id", "param", "value”],
 "rows": [
 [
 1686844271883,
 "urn:ngsi-v2:RAMI40:I4SubmodelElementProperty:OperationalData:TemperatureMeasure:hotelli_musta",
 "TemperatureMeasure",
 "26.18"
],
 [
 1686844228319,
 "urn:ngsi-v2:RAMI40:I4SubmodelElementProperty:OperationalData:TemperatureMeasure:hotelli_musta",
 "TemperatureMeasure",
 "26.17"
],
 [
 1686844130453,
 "urn:ngsi-v2:RAMI40:I4SubmodelElementProperty:OperationalData:TemperatureMeasure:hotelli_musta",

3 https://crate.io/docs/crate/reference/en/5.3/interfaces/http.html

53

 "TemperatureMeasure",
 "26.16"
],
 [
 1686844096661,
 "urn:ngsi-v2:RAMI40:I4SubmodelElementProperty:OperationalData:TemperatureMeasure:hotelli_musta",
 "TemperatureMeasure",
 "26.15"
],
 [
 1686844016541,
 "urn:ngsi-v2:RAMI40:I4SubmodelElementProperty:OperationalData:TemperatureMeasure:hotelli_musta",
 "TemperatureMeasure",
 "26.14"
]
],
 "rowcount": 5, "duration": 33.128746
}

4.1.2. Historical data retrieval: Time Series
As also presented in D9.2 and D2.4, the internal IMS Database provides an API Rest supporting NGSI

Time Series queries (NGSI-TSDB)4. The Digital Twins’ structure (D9.1 interfaces) and the list of

properties and operations defines the IDs to be used for the request (these are to be detailed in D4.3).

Next NGSI-TSDB test replicates the previous SQL query requesting the last 5 Temperature measures

for the hotelli_musta I-Crate deployed in Italian Cricket Farm pilot (ICF). All historical properties for

ICF pilot are stored within the icf fiware service.

Execute TSDB query (NGSI-TSDB REST API) to CoRoSect System IMS
GET [CoRoSect_TSDB_Server]/v2/entities/urn:ngsi-

v2:RAMI40:I4SubmodelElementProperty:OperationalData:TemperatureMeasure:hotelli_must
a/attrs/value?lastN=5

Headers Fiware-Service icf (for ICF pilot query)

Fiware-ServicePath

Payload None

Return values

code 404 Property (entity and/or attribute) not found

code 50X Server error

code 200 Success: retrieves JSON object including time index and values of the requested
property.

 {
 "attrName": "value",
 "entityId": "urn:ngsi-v2:RAMI40:I4SubmodelElementProperty:OperationalData:TemperatureMeasure:hotelli_musta",
 "entityType": "I4SubmodelElementProperty",
 "index": [
 "2023-06-15T15:46:56.541+00:00",
 "2023-06-15T15:48:16.661+00:00",
 "2023-06-15T15:48:50.453+00:00",
 "2023-06-15T15:50:28.319+00:00",
 "2023-06-15T15:51:11.883+00:00"],
 "values": [
 "26.14",
 "26.15",
 "26.16",
 "26.17",
 "26.18"]
}

4 https://app.swaggerhub.com/apis/smartsdk/ngsi-tsdb/0.8.3

54

4.1.3. Historical data presentation dashboards
CoRoSect Integrated System on its version 1 implements an internal instance of Grafana5, an open

tool to create and customise dashboards. This tool uses the mentioned historical access APIs to define

specific visualizations of the gathered data, complementing, this way, the presentation layer for the

historical records gathered and stored by the MES Information Management System (IMS). Figure 18

shows the dashboard designed to monitor the I-Crates to be deployed in pilots. Specifically, the

dashboard presents the status (last reported values for the monitored properties) for hotelli_musta I-

Crate plus the evolution during the last 2 hours of these parameters.

Figure 18. Dashboard test for hotelli_musta I-Crate: Parameters’ monitoring.

4.2. Synchronous and Asynchronous information management
From the set of requirements listed in D2.4, the CoRoSect integrated system, and specifically its

Information Management System (IMS), must support:

• The IMS provides data to other components (IT Level) upon request (synchronous data

query/retrieve)

• The IMS implements publish/subscribe mechanisms to distribute data among other

components – IT Level (asynchronous data query/retrieve)

These two requirements are supported, according to D9.2, using the RAMI4.0 compliant Eclipse BaSyx6

API implementation and through the NGSIv27 interface.

4.2.1. Synchronous data query/retrieve
This functionality allows the SFM/DSS (or any other external ERP/Data exploitation system) to directly

query the IMS and retrieve the structure and last reported values of any property and/or command

5 https://grafana.com/
6 https://wiki.eclipse.org/BaSyx_/_Documentation_/_API_/_AssetAdministrationShell
7 https://fiware-orion.readthedocs.io/en/1.13.0/user/walkthrough_apiv2/

55

linked to any registered Digital Twin, as well as to retrieve the full Digital Twin structure and associated

asset. This is supported by two implemented HTTP REST APIs:

• The NGSIv2 API REST, natively supported by the deployed CoRoSect’s Context Broker,

• And a CoRoSect’s customisation of the Eclipse BaSyx version 1, as an implementation of an

API REST on top of the NGSI specifications.

This BaSyx interface is the one used to validate the data availability, according to section 3.1.1 and

shown through the rest of section 3. The process followed to validate the shop floor DTs

implementation, validates in turn the synchronous query/retrieve functionality. As an example of the

validation queries done, the following request retrieves the Status value of the Stacking/Destacking

Robot

• Asset Administrarion Shell ID (AAS_ID) = AASDRobot

• Sub-model ID (Submodel_ID) = AssetConditionMonitoring

• Sub-model Element ID (SubmodelElement_ID) = Status

Retrieve Submodel Elements’ VALUES (for Submodel Elements’ PROPERTIES)
GET [BaSyx Server]/

aas/AASDRobot/submodels/AssetConditionMonitoring/submodel/submodelElements/Status
/value

Headers Fiware-Service Test

Fiware-ServicePath

Payload No payload

Return values

code 200 Success: Retrieves JSON object including value, and valueType for DRobot Status property

 {
 "value": 0,
 "valueType": { "dataObjectType": { "name": "string"} }
}

4.2.2. Asynchronous data query/retrieve
The asynchronous query/retrieve functionality allows the SFM/DSS (or any other external ERP/Data

exploitation system) to automatically receive requested information every time any update on it

happens and when it happens. This is an implementation of the Publish/Subscribe mechanism

described in Section 3.1.2 supported by the CoRoSect Context Broker instance, using the NGSI API.

This asynchronous communication is used by CoRoSect Integrated System V1 for:

• Automatically notify the SFM/DSS of any new update on DTs properties, for continuously

monitoring the Shop Floor status and commands’ flows

• Support the commands’ data flows between the context broker (and the registered DTs) and

the corresponding connectors (OPC-UA and/or MQTT ones), as well as between the SFM/DSS

components and the Context Broker. This is done by triggering automatic notifications when

the DT Operation elements are written by the component’s server (as a response) or by the

SFM/DSS (as a command request).

The following test registers the endpoint (http://CoRoSect_Server/poster/notifications) created to

receive POST notifications, creating a subscription to the property “Status” of the DRobot

(AASDRobot).

56

Create and register a Subscription to the DRobot Status value
POST [BaSyx Server]/subscription

Headers Fiware-Service Test

Fiware-ServicePath /test

Payload {
 "description":"Validate the Asynchronous Pub_Sub implementation",
 "subject":{
 "entities":[{
 "idPattern":"Status:AASDRobot",
 "type":"I4SubmodelElementProperty"
 }],
 "condition":{
 "attrs":["value”]
 }
 },
 "notification":{
 "http":{"url":"http://CoRoSect_Server/poster/notifications"},
 "attrs": ["value"]
 }
}

Return values

code 201 Success (Subscription properly executed)

 Header: subscriptionID: 627d3ad2f9879f2055f87a74

And this is the notification received when DRobot status changes to “0” value.

NOTIFICATION
POST [http://CoRoSect_Server/poster/notifications]

Headers Fiware-Service test

Fiware-ServicePath /test

Payload { "subscriptionId": "627d3ad2f9879f2055f87a74",
 "data": [{
 "id": "urn:ngsi-
v2:RAMI40:I4SubmodelElementProperty:AssetConditionMonitoring:Status:AASDRobot",
 "type": "I4SubmodelElementProperty",
 "value": {
 "type": "Number",
 "value": 0,
 "metadata": {}
 } }]
}

Return values

code 200/201 Success (notification received)

57

5. Simple orchestration tests

The section describes the set of test scenarios that involve SFM/DSS. These are intended to validate

the combined operations between components managed from the SFM/DSS and by using the IMS to

invoke corresponding operations. Successfully running workflow scenarios ensures the safe operation

of the functionality provided by the shop floor components. Basic tests are the building block for a

combined test which is already like a real use case scenario. The following shopfloor components were

covered:

• Staking/De-stacking Robot (DRobot)

• Manipulation Robot (MRobot) with Visual Inspection (VI) attached module

• Routes Manager (RM) and indirectly, the Objects Detector (OD)

• AGV

All test scenarios are saved as Business Process Model and Notation (BPMN) files, which can be

uploaded by a human operator and executed through the SFM/DSS web application.

5.1. DRobot – Test Scenarios
The first test scenario DRobot-01 (Figure 19), checks if the DRobot receives the correct initial 3d-

Dimension (GridDescription) of stacked pallet crates or for de-stacking on another pallet later. This is

necessary to avoid later problems with the optional looped stacking/de-stacking procedure.

Figure 19. Test Scenario: DRobot-01

The second test scenario DRobot-02 (Figure 20), checks with a more comprehensive workflow the

correct execution procedure. The operation InitilaizeCell informs DRobot about the current 3d-

Dimension (GridDescription) for pallets to be stacked/de-stacked. The operation HomePosition

ensures safe collaboration with the MRobot when they share the workspace. One de-stacking and one

stacking operation will be executed to test if the operations can be successfully executed.

58

Figure 20. Test Scenario: DRobot-02

The third test scenario DRobot-03 (Figure 21), enhances the previous test scenario DRobot-02 by

adding a loop for de-stacking/stacking pallets. The abortion condition “Has more crates” is related to

the input variable GridDescription of operation InitializeCell.

Figure 21. Test Scenario: DRobot-03

5.2. MRobot with VI – Test Scenario
The test scenario MRobot-01 (Figure 22), checks if operations can be successfully executed. The

operation HomePosition ensures safe collaboration with the DRobot when they share the workspace.

The exemplary operation “Take sample” is a combined operation of MRobot with VI (the visual

inspection tool).

Figure 22. Test Scenario: MRobot-01

5.3. RouteManager – Test Scenarios
The first test scenario RouteManager-01 (Figure 23), checks if a new route can be successfully created

and finally started. The operation StartRoute normally triggers the AGV to move to its destination.

59

Figure 23. Test Scenario: RouteManager-01

The second test scenario RouteManager-02 (Figure 24), enhances the previous test scenario

RouteManager-01 by adding a condition check if the route is valid. Otherwise, it will be retried to

create a new route.

Figure 24. Test Scenario: RouteManager-02

5.4. AGV – Test Scenario
The initial test scenario AGV-01 checks if the AGV can successfully pick and drop pallets by executing

the corresponding operations.

5.5. RouteManager and AGV – Test Scenarios
The first test scenario “RouteManager with AGV - 01” (Figure 25), checks if the AGV can pick a pallet,

move it from point A to point B, and drop the pallet on point B. A new route was created and started

at the RouteManager to move the AGV from point A to point B with the pallet.

60

Figure 25. Test Scenario: RouteManager with AGV - 01

The second test scenario “RouteManager with AGV – 02”, enhances the previous test scenario

“RouteManager with AGV - 01” by adding the condition logic from RouteManager-02. It additionally

retries to create a route if not valid through the RouteManager.

Figure 26. Test Scenario: RouteManager with AGV - 02

5.6. Combined test scenario
The combined test scenario (Figure 27) involves all shop floor components necessary to create later

use cases for the pilots. It can be seen as a template. This combined test scenario is based on the

previous test scenarios presented. It involves DRobot, MRobot with VI, RouteManager, and AGV.

Table 32 is extracted from the IMS registries and corresponds with the commands’ sequence executed

during the integration tests carried out within the farm’s pilots, where all the physical shop floor

61

components are present and connected to the same shop floor network. It illustrates the combined

test scenario represented in Figure which represents the baseline orchestration between the AGV, the

Routes’ Manager plus the Objects’ detector, the D-Robot and the M-Robot which supports all the Use

Cases. This sequence is triggered and managed by the Shop Floor Manager and the Decision Support

System, using the IMS interfaces to interact with the real shop floor devices. The Input Variable,

Operation Results and Output Variable columns are only represented by a json payload when are

provided by the corresponding command input and/or the command output, as the actual content

would make the table unreadable.

62

Figure 27. Combined test scenario

63

Table 32. Commands’ sequence for Use Case 1 Shop Floor components’ Orchestration. Triggered from the SFM and registered in the IMS.

Input/Output Time
Request ID
(Command ID)

Entity (Submodel:Command:Device_AAS) Command
Input
Variable

Operation
Result

Output
Variable

Command
IN -->

15/06/2023 16:24
d51a5ede-83b0-474e-
baff-47b5cdbf5f37

OperationalCapability:pick:AGV1 pick {JSON Input}

Response
<-- OUT

15/06/2023 16:24
d51a5ede-83b0-474e-
baff-47b5cdbf5f37

OperationalCapability:pick:AGV1 pick {JSON Output}

Command
IN + OUT

15/06/2023 16:24
a38ddd28-b0a5-493d-
96e0-dbaa37d0474b

OperationalCapability:NewRoute:RouteManager NewRoute {JSON Input} {JSON Output}

Command
IN + OUT

15/06/2023 16:26
b0e4253e-6ff4-4516-
903f-58a4dfebd0aa

OperationalCapability:StartRoute:RouteManager StartRoute {JSON Input} {JSON Output}

Command
IN -->

15/06/2023 16:26
b3ac38f6-6d29-433e-
9f98-ae02e4478528

OperationalCapability:drop:AGV1 drop {JSON Input}

Response
<-- OUT

15/06/2023 16:26
b3ac38f6-6d29-433e-
9f98-ae02e4478528

OperationalCapability:drop:AGV1 drop {JSON Output}

Command
IN -->

15/06/2023 16:27
5b874925-ec29-4225-
ab92-614781a0aca1

OperationalCapability:ExecuteGeneralTask:AASDRobot ExecuteGeneralTask {JSON Input} {JSON Output}

Response
<-- OUT

15/06/2023 16:27
5b874925-ec29-4225-
ab92-614781a0aca1

OperationalCapability:ExecuteGeneralTask:AASDRobot ExecuteGeneralTask {JSON Output} {JSON Output}

Command
IN -->

15/06/2023 16:27
3063e6b4-2f89-4181-
aca5-12869e1c7da7

OperationalCapability:DeStackCrate:AASDRobot DeStackCrate {JSON Input} {JSON Output}

Response
<-- OUT

15/06/2023 16:27
3063e6b4-2f89-4181-
aca5-12869e1c7da7

OperationalCapability:DeStackCrate:AASDRobot DeStackCrate {JSON Output} {JSON Output}

Command
IN -->

15/06/2023 16:29
e402a402-83e6-45a3-
8aac-74bccb0b2cd6

OperationalCapability:MRobotExecuteTask:AASMRobotVI MRobotExecuteTask {JSON Input} {JSON Output}

Response
<-- OUT

15/06/2023 16:29
e402a402-83e6-45a3-
8aac-74bccb0b2cd6

OperationalCapability:MRobotExecuteTask:AASMRobotVI
MRobotExecuteTask {JSON Output} {JSON Output}

Command
IN -->

15/06/2023 16:33
c6fcfe2e-a09c-4167-
88f6-54a1053814eb

OperationalCapability:StackCrate:AASDRobot StackCrate {JSON Input} {JSON Output}

Response
<-- OUT

15/06/2023 16:33
c6fcfe2e-a09c-4167-
88f6-54a1053814eb

OperationalCapability:StackCrate:AASDRobot StackCrate {JSON Output} {JSON Output}

Command
IN -->

15/06/2023 16:35
e7b651c7-cee4-4626-
b4d5-632faeead0d2

OperationalCapability:pick:AGV1 pick {JSON Input}

Response
<-- OUT

15/06/2023 16:35
e7b651c7-cee4-4626-
b4d5-632faeead0d2

OperationalCapability:pick:AGV1 pick {JSON Output}

Command
IN + OUT

15/06/2023 16:36
aedc4199-2cdf-415c-
bd7d-4ab4e6becbe8

OperationalCapability:NewRoute:RouteManager NewRoute {JSON Input} {JSON Output}

Command
IN + OUT

15/06/2023 16:36
e27de63c-2395-411a-
bd4d-2e7d79230e30

OperationalCapability:StartRoute:RouteManager StartRoute {JSON Input} {JSON Output}

Command
IN -->

15/06/2023 16:38
2714a9f9-a8a8-4e34-
bbf4-f5012273accc

OperationalCapability:drop:AGV1 drop {JSON Input}

Response
<-- OUT

15/06/2023 16:38
2714a9f9-a8a8-4e34-
bbf4-f5012273accc

OperationalCapability:drop:AGV1 drop {JSON Output}

64

6. Conclusions

The set of results shown within this document represents the summary and the final outcomes of a

longer process carried out with each of the CoRoSect system components, including here physical

robot devices, deployed servers, developed software connectors, interfaces’ implementations, and

IMS and SFM/DSS building blocks. This integration process involved all CoRoSect technical staff (Shop

Floor components’ providers and MES developers) and many failed tests checking communication

protocols, connectors’ configurations, programming bugs and a lot of concepts’ discussions till we get

a final success reading each required property and running each implemented command according to

the RAMI4.0 specifications.

In a first stage, this process focused on each single component integration with the IMS. In this way,

the OPC and MQTT connection; each shop floor component’s Digital Twin plus their corresponding

cell controller and server; the data gathering, storage and catering services and the commands’ flows

were successfully validated. For this stage, the cloud instance of the CoRoSect Integrated system was

used, and so, also validated.

For a second stage, the orchestration of the real shop floor, this is: the basic sequence of related tasks

executed by each corresponding robot and system, everything commanded and controlled by the

CoRoSect’s Shop Floor Manager; was also partially validated. For this second stage, all robots and

systems involved in the use cases were needed to be present and connected to the same network, so

this orchestrations’ tests were only possible during the farms’ pilots. In this sense, two independent

instances of the CoRoSect’s Integrated systems were deployed on each farm to evaluate the

installation of the required software pieces. For these reasons, current document was delayed till the

second pilot, so corresponding tests were done. Within these tests, most of the technical integration

and orchestration issues were successfully polished and finally validated. Nevertheless, there were

some orchestration concepts related to the tasks flows progress’ tracking and concrete execution of

commands related to the AGVs routing, that prevent the achievement of 100% of the full

orchestration. These issues have been properly identified and will be solved, tested, and validated

during the next two final pilots.

From the full validation process executed so far, we mainly conclude:

• Although data and commands flows were successfully validated, the overall Information

exchange is in general, inefficient. Too much static information is moved within each message.

This approach is valid for the pilots’ framework, with very little devices integrated/connected

but the unnecessary payloads will increase when adding wider farms. Connectors should be

modified, and storage strategy should be revisited to move and store only changing values,

while keeping RAMI4.0 compliance.

• The orchestration process must be polished and proper tracking properties must be identified

and standardised among the defined DTs. Current implementation allows each provider to

name and use their own properties that monitors their tasks’ progress. This makes the Shop

Floor Manager to program customised flows’ controls for each integrated component.

Standard task monitoring properties will result in simpler, more efficient control mechanisms

for the SFM.

These two concluding issues will be considered for next full system version inf D9.3 and its validation

in D9.5, as well as for future evolutions of the CoRoSect System, beyond CoRoSect project.

After this first full validation process, the CoRoSect System V1 is ready for Use Cases performance and

so, evolve to its final version.

65

