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Executive Summary 

This document takes up the Advanced CoRoSect’s architecture defined by Task 2.3 in its D2.4 (M24) 

and details the implementation of the first instance of the CoRoSect’s System, ready to test the 

integrations and the performance. Here are presented all the components’ first functional 

implementation schemas, including the protocols, hardware interfaces, connections, programming 

languages and hardware devices used to build all of them and so, support all their addressed 

functionalities and integration capabilities.  

This text also links with D9.1, as it uses the here provided interfaces (RAMI4.0 Asset Administration 

Shells) to integrate and communicate all the components and layers, and with D9.3 by providing the 

technical layout for the first round of system’s tests. 

From the existing technologies and I4.0 compliant initiatives for IIoT architectures, FIWARE 

framework has been selected for implementing the CoRoSect’s Information Management System 

(IMS) and the data sharing interfaces to support AAS-based communications and data storage. This 

implementation enables the shop floor management and links the OT layer with the IT layer using I4.0.  

All the implementations rely on RAMI4.0 compliant standards to expose their connection interfaces, 

and common network protocols to build the system’s network. 

In summary, this D9.2 provides a concise technical description of the approaches (including protocols, 

programming languages, deployment environments, etc.) selected for the deployment, integration, 

and instantiation of the CoRoSect System first release, as pointed in M18 review, intended to support 

the pilots’ demonstrators (WP10) and CoRoSect evaluation (T9.3). It also presents the cloud Testbed 

created that includes an instance of this first release, intended to help CoRoSect’s developers to 

integrate and test their corresponding devices. 
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1 Introduction 
1.1 Scope and objectives of the deliverable 
This is the document that presents the first implementation of the CoRoSect’s System, based on the 

advanced architecture provided by Task 2.3 in D2.4. Its objective is to detail the set of hardware and 

software pieces selected to provide RAMI4.0 integration, supporting I4.0 protocols and interfaces 

defined by D9.1. This system’s first implementation will be used to test and evaluate: 

• The integrations between all system’s components according to the defined interfaces (i.e. 

defined AAS) 

• The performance of the RAMI4.0 connectors developed within the scope of the project 

• The data gathering process and information distribution, including synchronous and 

asynchronous query/retrieve interfaces 

• The commands’ flow between the Information Technologies (IT) layer and the Operations 

Technologies (OT) layer (i.e., Shop Floor Manager and Shop Floor Devices) 

• The interactions defined between integrated components, (i.e., handling cells) their 

performance and response times  

• The Digital Twins implementations usability for data sharing and process management 

• The replicability and scalability of the proposed implementation, by testing and comparing 

cloud and on-premises deployments and providing different solutions to the farms to 

implement the CoRoSect’s solution. 

• The level of fulfilment of CoRoSect’s functional and technical requirements, supervised by 

the end-users (i.e. insects’ farms responsible) and according to the work done in WP2 

For this purposes, Task 9.2 is providing a cloud testbed, based on Kubernetes and Docker containers, 

so first developed versions of different software components (context brokers, data bases, 

connectors, interfaces, controllers, etc.) can be deployed and managed by each responsible partner 

to polish the implementation of their interfaces, digital twins, and data management operations.  

This testbed is used to evolve the CoRoSect’s pieces to stable versions that conform the on-site 

orchestrator, based on Docker containers, that quickly deploys an isolated instance of the CoRoSect’s 

system in the farm’s intranet. This implementation will be used to run the corresponding pilots on the 

selected farms. 

1.2 Relationships with other deliverables and tasks 
The CoRoSect’s System implementation requires first from the architecture defined to support all the 

requirements and functionalities derived from the WP2 analysis. This is provided by the Task 2.3 and 

both versions of the architecture (Initial – D2.3 and Advanced – D2.4) are used first for the initial 

developments and finally to align with the latest version the implementations’ descriptions. From WP4 

to WP8 progresses, this task derives the proposed implementations for the systems’ building blocks 

and integration interfaces defined by Task 9.1. Finally, the instantiated system will support the WP10 

pilots and so, the evaluation of the CoRoSect’s system. These relationships are depicted in Figure 1 

and include the following incomes from WPs: 

• WP2 (Use-cases, user requirements and system architectures): user requirements and 

specifications from Tasks 2.1 and 2.2 are initially collected by Task 2.3. This are shown in 

o D2.3 Initial System Architecture (M12) [1] 

o D2.4 Advanced System Architecture (M24) [2] 
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• WP4 (Farm-level modelling and orchestration): provides the architectures for the SFM, the 

DSS and the IMS. 

o D4.2 Data analytics to obtain the prediction models (M18) [3] 

o D4.3 IMS Implementation (M30) (preliminary proposals for its implementation) 

• WP5 (AI-enabled perception methods): provides the architecture for the Objects detector 

and the VR tools for the Augmented Reality (AR) simulators. 

o D5.1 Object detection methods for environment analysis (M30) (initial proposals) 

o D5.2 Tools for natural interaction with the VR environment (M30) (initial proposals) 

• WP6 (Robotic actions planning and control) and WP7 (Cognitive robots and smart 

mechatronics): provide the architectures for Shop Floor components deployment and 

integration. 

o D6.1 Documentation of control for handling of crates (M12) [4].  

o D6.2 Documentation of control for insect handling (M12 and M24) [5]. 

o D6.4 Safety concept and control in robotic systems (M12 and M24) [6]. 

o D7.1 Sensoring solution to support insect rearing process automation (M30). 

o D7.2 Report on and documentation of robot cell for handling crates (M12 and M24) 

[7]. 

o D7.3 Report on and documentation of robot cells for object manipulation and feeding 

(M12 and M24) [8]. 

o D7.4 Report on and documentation of AGV for insect farms (M30)  

• WP8 (Human-robot collaboration schemes): architecture for the Routes’ Manager 

deployment and integration. 

o D8.2 Autonomous and human-aware robot trajectory plan for safe and efficient HRC 

(M32) 

• WP9 (Secure platform integration): architecture of the CoRoSect system instances. 

o D9.1 Integration plan and definition of the interfaces (M24) [9] 

 

Figure 1: D9.2 dependences with other CoRoSect’s tasks and work packages 
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1.3 Structure of the deliverable 
As introduced, the scope of this document is to detail the implementation of the first release of the 

CoRoSect’s System, including the set of selected and developed software and hardware componentes 

to support CoRoSect’s buiding blocks and functionalities. This proposed implementation will follow 

the Advanced System Architecture and implememt the RAMI4.0 interfaces defined in Task 9.1. 

According to this, the structure of this deliverable is as follows: 

• Section 2 (Architecure) takes up the CoRoSect’s Advanced Architecture from D2.4 as the 

guideline to implement and present the CoRoSect’s system. Introduces the FIWARE Smart 

Industry architecure as the core for the IMS. 

• Section 3 (Shop Floor Components) details the components of the project’s Shop Floor and 

describes their implementation according to their architecture introduced in D2.4. 

• Section 4 (MES) details the components of the project’s Manufacturing Execution System and 

their implementation. Includes also the definition of the interfaced supported to manage 

collected information. 

• Section 5 (Robots’ planning & control) details the implementation of the project’s handling 

cells and sub-systems to control the shop floor performance according to project’s objectives. 

• Section 6 (Human-Robot collaboration) covers the elements for the project’s safe routing of 

AGVs and the tools to enhance human and robot learning processes. 

• Section 7 (CoRoSect’s deployments) describes the cloud instance used as testbed and the 

orchestrator created to instantiate the defined system’s implementation. 

• Section 8 (Conclusions) closes the deliverable and the CoRoSect’s firs release description, 

setting the bases for the pilot’s support (WP10) and the final CoRoSect’s relase. 
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2 CoRoSect’s System Architecture 

Current section sets the baseline for the CoRoSect systems implementation. It uses the Advanced 

System Architecture (Figure 2) provided by Task 2.3 (D2.3 and D2.4) to identify the components that 

need to be developed and instantiated. This directly links the deployed system with the requirements 

and objectives of the project, to evaluate their fulfilment and performance. On the other side and 

extracted from the current architecture implementations presented in D2.3/D2.4, it also introduces a 

catalogue of open-source enablers to develop and implement the required building blocks.  

 

Figure 2: CoRoSect’s Reference Architecture (from D2.4) 

2.1 CoRoSect’s Advanced System Reference Architecture 
Task 2.3 within CoRoSect’s WP2 has defined an initial (D2.3) and advanced (D2.4) system architecture 

to cover project’s objectives, scenarios and use cases. These architectures are based on the 

requirements (both, technical and functional) extracted from the farms automation’s needs; insect’s 

rearing processes to be implemented; and the involved shop floor components providers themselves. 

This Advanced System Architecture (an evolution of the Initial Architecture) is used the planning guide 

to deploy the software and hardware components that build all the functional pieces and fulfil the 

requirements specified by the WP2. This architecture (Figure 3) divides the full system into four main 

functional blocks: 

• The Shop Floor Level (Operational Technologies); includes the robots, attached devices, IoT 

infrastructures and mechatronics used to execute the insects’ rearing processes identified in 

CoRoSect. This is represented mostly by the hardware components, but also will deploy the 
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proprietary software controllers and specific cell controllers that enable the direct interaction 

with these elements.  

• Management Level – Manufacturing Execution System (MES); implements the software 

components to homogenise, stores and manage all the information from the Shop Floor (and 

any other potential data source) and support the trigger and control actions for the 

manufacturing process, with assisted decision-making module. 

Between these two levels, the system implements the integration layer based on RAMI4.0 interfaces 

and protocols defined in D9.2 

• Robotics’ Actions Planning and Control; exploits data from the MES and from the direct 

controllers of the shop floor components; and implements the cell controllers that interacts 

with all components at the shop floor to ensure an efficient and safe process orchestration at 

the cell’s level. 

• Human-Robot Collaboration Environment; defines and implements a set of systems that 

operates at the top of the architecture to manage the AGV at the shop floor. These are 

intended to optimise their routes while avoiding accidents and blockages. Here are also 

included the VR tools to enhance human and robot learning processes.  

Assisting these two sections, the Simultaneous Localization and Mapping (SLAM) module will be 

implemented and supported by the AGV controller and the Route Manager sub-system.      

 

Figure 3: CoRoSect’s Advanced Reference Architecture – Logical View (from D2.4) 

2.2 FIWARE Smart Industry Reference Architecture 
FIWARE [10] was born in early 2010’s as a platform, driven by the European Union, for the 

development and global deployment of Future Internet (FI) applications. Initially, it was focused on 

IoT infrastructures exploitation within the smart city’s framework to promote open standards and 

open-source developments to foster smart cities evolution, but, once matured within this 

environment, it is exporting its expertise and integrating IoT in other cutting-edge scenarios, such as 

the Smart Industry and I4.0. Its greatest differential values with respect to other initiatives are: 
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• 100% Open standard (Open Source). 

• Open data models and licence-free use, with mass adoption and driven by an specific 

initiative: Smart Data Models. 

• Standard APIs supported by the OMA and the ETSI (ETSI NGSI-LD [11]). 

• Wide set of Open-Source library of developed components (General Enablers) to interact and 

integrate woth different IT infrastructures (coomon data bases, dashboards, ERPs, etc.) 

• Wide (and growing) adopters’ community (components deployed in more than 250 cities all 

over the world). 

The FIWARE solution for Smart Industry [12] exports its curated architecture to the Industry IoT (IIoT) 

world, focusing on the decisions’ support and the business processes’ automation. It proposes a 

functional architecture (Figure 4) that combines the NGSI standard and the Smart Data Models for 

easy and agile data management, with the extended and powerful I4.0 compliant protocols. It creates 

a versatile data space for effective data exchange within the smart manufacturing farm’s scenario but 

also with other related domains, such us smart logistics, enabling the creation of innovative value 

chains. 

 

Figure 4: FIWARE1 Smart Industry Reference Architecture 

The solution proposed for CoRoSect’s System, based on its advanced architecure, builds on top of the 

management of Context Information: FIWARE framework defines context as a collection of entities 

that work as Digital Twins of real world assets, both physical (e.g., a gripper, a robot arm or an 

operator) or conceptual (e.g., a claim, a command, etc.). FIWARE architecture provides enablers to 

work with the NGSI standard open API [13] and manage information about these entities, as the 

CoRoSect’s Digital Twins. From the achitecture in Figure and from the FIWARE General Enablers’ 

cataloge, CoRoSect extratcs for the implementation of its system: 

• IoT Agents  [14] are specific adaptors for a given communication protocol and its dara 

structure to the NGSI protocol and JSON models payloads. On one side, they implement a 

 
1 https://www.fiware.org/about-us/smart-industry/ 
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proprietary protocol (for a dedicated IoT Agent) or a non-ngsi interface (for common 

communication standards), whilst,on the other side, they provide a REST interface able to 

manage NGSI updates and requests. They are usually configured to convert a specific data 

structure, provided by the device manufaturer or the native communication protocol to a 

selected Smart Data Model JSON payload. FIWARE catalogue provides native MQTT, LoRa and 

OPC agents, but also the code and structure to code and deploy customised ones. 

• The Context Broker [15] is the core component of the architecture, implementing and 

supporting the NGSI API Rest and functionalities. Currently, there are several implementations 

available in the catalogue, supporting NGSIv2, NGSI-LD or both. All the information of the 

system passes through the Context Broker. 

• Historical data connectors and storage components  connect to the Context Broker to capture 

selected data and store it. There are different historical data connectors available, able to 

download data to different data base managers (mongoDB, MySQL, Hadoop, Postgre, etc.) 

where it can be structured and classified according to time series or to specific customised 

patterns. This historical datasets can be later used to feed AI engines and/or clients’ 

dashboards.  

• Smart Data Models initiative [16] provides a wide set of explotable data models for many 

different devices, sources, scenarios and applications, derived from and enriched by different 

real use cases. It is a life community that works for the standardisation, homogenisation and 

disemination of these NGSI-based data models, as well as for the expansion of this set to cover 

new areas. In this sense, it provides tools and support to define new data models or modify 

exisiting ones to expand the FIWARE functionalities.    

These components will be deployed and combined to build the CoRoSect’s System IMS instance that 

underpins the system integration as shown in the following sections. 

  



 

17 
 

3 Shop Floor Component’s Integration  

Here are described the implementation and integration of the different components at the CoRoSect’s 

Shop Floor (Figure 5). This has been defined within WP2, were the required cyber-physical devices and 

software systems (the OT and the IT layers respectively) have been put in place to build the project 

use cases and scenarios. It is described in D2.3 and includes the main modules to handle the crates 

i.e., the Staking/De-stacking cell and its tools; the insects’ manipulation cell, with the corresponding 

robot arm and the visualization module, the I-Crates and the automated guided vehicles. Here also 

are mentioned the I4.0 compliant protocols needed to communicate with other components. 

 

Figure 5: CoRoSect’s Shop Floor (from D2.4 scenario set up) 

3.1 Shop Floor Integration Protocols 
The standard integration protocols are a key component of the integrated shop floor, as they will 

support the I4.0 compliant communication. For the physical layers of the communication 

infrastructure, and ethernet network will be used, supporting TCP/IP protocols (Figure 6). On top of 

this, and as detailed in D9.1 (Integration Plan and definition of interfaces), CoRoSect solution would 

support any communication protocol working on top of the TCP/IP stack, release I will work with: 

• OPC-UA protocol to communicate Industrial OPC Servers (Robotics): M-Robot, D-Robot, etc. 

• MQTT protocol to integrate IoT infrastructures (I-Crates) and those components that already 

implement any kind of MQTT compliant protocol, such as the AGV or the Routes’ manager. 
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Figure 6: Network connections and protocols for CoRoSect System (on-site configuration) 

3.2 Shop Floor level devices and systems 
Following subsections review the CoRoSect’s Shop Floor set up (Figure 5) and provides the details of 

each component’s deployment, according to their architectures shown in D2.4.  

3.2.1 Stacking/De-staking Robot (D-Robot)  
The D-Robot is a core component in the CoRoSect Robotic Cell formed by the combination of the D-

Robot and attached devices. The D-Robot's main objective is to securely moves crates and boxes from 

the pallet with stacked crates transported by the AGV to the table of operation, where each crate will 

be manipulated by the M-Robot, and back again into the empty pallet. The D-Robot is equipped with 

sensors and robust controllers to manipulate crates filled with insects in a safe way. 

As detailed in D2.4, The D-Robot’s main functionality is divided into two procedures: 

• De-stacking procedure: D-Robot picks crate from input pallet and places it in operation table. 

• Stacking procedure: D-Robot picks crate form operation table and places it in output pallet. 

The D-robot cell is composed by: 

• Robotic arm: KUKA KR70 21002. Industrial robot with a reach of 2100mm and a rated payload 

of 70 Kg. 

• Robotic gripper: Schunk pneumatic gripper PSH523 equipped with custom jaws for each crate 

type.  

• Lasers and RGB-D sensors for visual servoing. 

• Computer with HMI for system monitoring. 

The D-Robot deployment and integration schema is shown in Figure 7 and follows the general 

approach proposed for CoRoSect Shop Floor devices. It is divided in:  

• D-Robot Device System deployment, composed by a KUKA KR70 2100 robotic arm, a KUKA 
KRC5 controller, and a computer running the D-Robot Control System. The robotic arm is 

 
2 https://www.kuka.com/-/media/kuka-
downloads/imported/6b77eecacfe542d3b736af377562ecaa/0000332117_en.pdf 
3 https://schunk.com/de/en/gripping-systems/parallel-gripper/psh/psh-52-1/p/000000000000302152 
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controlled through the RobotSensorInterface4 (RSI) from Kuka which enables the reception of 
low-level commands from an external computer. RSI is a KUKA proprietary software 
technology package for implementing applications that require cyclical signal processing as 
well as high-performance, cyclical influence over the robot motion, it uses XML format for 
information exchange. The KUKA arm is directly connected to an external PC which runs the 
ROS D-Robot controller (described in next section) via Ethernet. The KUKA arm is 
complemented with: 

o Schunk PSH52 pneumatic gripper to grab the crates. The gripper is actuated by a 
pneumatic system, available in the end user facilities. The actuation of the gripper is 
controlled by a standard IO system via a PLC which enables the execution of 
open/close operations. This PLC is connected through ethernet to the computer 
controlling the D-Robot Control System. 

o Lasers and RGB-D Cameras are used as visual sensors for servoing, which are installed 

near the end-effector of the robot and connected to via USB to the main computer. 

• D-Robot Control System deployment, composed by:  
o D-Robot Controller developed using ROS [17], an open-source framework for robotics. 

A manipulation application based on ROS and MoveIt [18] that enables the robot to 
robustly and accurately de-stack and stack crates filled with insects has been 
developed. MoveIt is an open-source tool that allows robot trajectory path planning 
considering both the robot model and the modelled robot environment, which are 
used for collision avoidance. The modelled environment can also be modified 
dynamically, the robot can interact with the modelled environment. This modelled 
environment is used to move crates around without colliding. An official KUKA ROS 
driver5 has also been adapted and integrated in the D-Robot Controller. The driver 
uses RSI to create an interface to control KUKA robots via ROS. The ROS interface uses 
joint position commands to control the robot (bridge between ROS and the Kuka low 
level commands).  

o Gripper Controller is a simple ROS Node that receives commands to operate the 
gripper, which then activates the corresponding outputs in the in PLC to grab o release 
the gripper. 

o Visual Sensor Controller are ROS nodes that receive the stream of data from the laser 
and cameras and output the pose of the crate, which is then used to perform small 
corrections on the robotic arm movement to compensate the deviation in the 
positioning of the crates. 

o OPC-UA [19] Server has been developed using ROS. The D-Robot OPC-UA server 
exposes to the IMS the different command actions available in the D-Robot, it also 
updates the status of the D-Robot dynamically (whether it is moving, executing 
commands, or if the commanded actions have succeeded or failed).  The D-Robot 
OPC-UA server is a bridge between the IMS and our software developed using ROS, 
where ROS actions and services are used to command the robot.   
 

• D-Robot connection to CoRoSect Network. The CoRoSect IMS (Information Management 
System) manages a Digital Twin (DT) for the D-Robot. The command flow through the IMS is 
implemented using a customized asynchronous PUB/SUB mechanism. In order to trigger the 
command, the first step is to modify the D-Robot DT. A post request will be sent to the Context 
Broker (CB) with the command and the value to be executed by D-Robot. This command 

 
4 https://www.kuka.com/en-gb/products/robotics-systems/software/application-
software/kuka_robotsensorinterface 
5 https://github.com/RobotnikAutomation/kuka_experimental/tree/melodic-
devel/kuka_rsi_hw_interface/krl/KR_C4 
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information is automatically addressed to the D-Robot OPC-UA [19] Connector which maps 
the command request from the SFM to the D-Robot OPC-UA Server to be executed. The D-
Robot OPC-UA server receives the command and executes the required ROS action and 
services needed to operate the D-Robot to carry out the required task. As the D-Robot 
executes the task the D-Robot OPC-UA server dynamically updates the status of the D-robot. 
The D-Robot response and/or the commands results are, in turn, written in the D-Robot 
corresponding DT attribute by its OPC Server/Connector, and then redirected by the IMS to 
the SFM or to any other interested system. 
 

 
Figure 7: Stacking/De-stacking Robot (D-Robot) deployment 

3.2.2 Manipulation Robot (M-Robot, VI) 
The M-Robot is a core component in the CoRoSect Robotic Cell (the entire Cell is formed by the 

combination of the M-Robot and D-Robot). The M-Robot's main objective is to support the insect 

rearing processes. For this the M-Robot performs the following tasks (1) manipulation of insects (e.g., 

picking, placing, sorting), (2) feeding of insects (e.g. adding feed to insect crates), (3) monitoring of 

insects (e.g. visual monitoring of growth), and (4) material handling for manipulating the insects’ 

environments (e.g. adding/removing support structures into/from crates). The M-Robot is designed 

to collaborate with human co-workers. To fulfil its tasks the M-Robot is equipped with sensors and 

robust controllers to perform its tasks in a safe way. 

The M-Robot (Figure 8) is composed of: 

• a KUKA LBR iiwa6 14 collaborative robot arm, 

• End Effectors such as a pneumatic gripper for safely handling insects and materials, 

• a Visual Inspection Sensor providing automatic visual inspections of insects for monitoring of 

the insect rearing processes and quality control, 

• External Visual Sensor(s) for environmental analysis and modelling used for automatic 

obstacle avoidance, action planning, and human-robot collaboration. 

The M-Robot deployment and integration schema is shown in Figure 8 and follows the general 

approach proposed for CoRoSect Shop Floor devices. It is composed of the following components:  

 

 
6 https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa 
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• M-Robot Device System deployment, composed of a KUKA LBR iiwa 14 collaborative robot arm, 
a KUKA SUNRISE controller, and a computer running the M-Robot Control System. The robotic arm 
is controlled through the KUKA Line Interface (KLI) from KUKA which enables the reception of low-
level commands from an external computer. KLI is a KUKA proprietary technology package for 
connecting to higher level control infrastructure. The KUKA arm is directly connected via Ethernet 
to an external PC, which runs the ROS M-Robot controller (described in next section). The KUKA 
arm is complemented with: 

o customised End Effectors such as a pneumatic gripper for safely handling insects and 

materials. The gripper is actuated by a pneumatic system from Festo that allows opening 

and closing of the grippers. This pneumatic system is controlled from the M-Robot Control 

System via an EtherCAT module. 

o a Visual Inspection Sensor. This high-resolution camera is mounted on the robot arm and 

provides images to the D-Robot Control System through a USB interface. 

o External Visual Sensor(s) for environmental analysis and modelling are installed to 

provide an overview of the M-Robot’s workspace. The visual sensors provide images to 

the D-Robot Control System through a USB interface  

• M-Robot Control System deployment, composed of:  
o M-Robot Controller developed using ROS [17], an open-source framework for robotics. A 

manipulation application based on ROS and MoveIt! [18] has been developed that enables 
the robot to robustly and accurately plan and execute movements for insect and material 
handling. MoveIt! is an open-source tool that allows robot trajectory path planning taking 
into account both the robot model and the modelled robot environment, which are used 
for collision avoidance. The modelled environment can also be modified dynamically, the 
robot can interact with the modelled environment.  

o End-Effector Controller is a ROS Node that receives commands to operate End-Effectors 
such as a pneumatic gripper. The ROS Node then controls the End-Effectors via an 
EtherCAT interface e.g. to activate the gripper. 

o Visual Inspection (VI) Sensor Controller are ROS nodes that receive the stream of data 
from the high-resolution Visual Inspection Sensor and output information relevant for 
quality management of the insect rearing processes such as detected anomalies. The 
Visual Inspection Sensor is mounted on the KUKA robot arm so that the Visual Inspection 
Sensor can be positioned in various poses relative to the crates with insects. This is 
necessary to provide detailed scans of the crates while avoiding occlusions from obstacles 
such as necessary support material placed inside the crates for insect rearing. The Visual 
Inspection Sensor Controller plans and provides the desired positions of the Visual 
Inspection Sensor relative to the crates as required for the image acquisition and quality 
management.  

o External Visual Sensor Controller are ROS nodes that receive the stream of data from the 
External Visual Sensors and output a 3D model of the workspace to identify the pose of 
the crate, the crate’s content, and the position and movement of human co-workers. This 
information is then used by the M-Robot Controller to plan safe robot movements that 
avoid collisions with obstacles and human co-workers. 

o OPC-UA Server has been developed using ROS. The M-Robot OPC-UA server exposes to 
the IMS the different command actions available in the M-Robot, it also updates the status 
of the M-Robot dynamically (whether it is moving, executing commands, or if the 
commanded actions have succeeded or failed).  The M-Robot OPC-UA server is a bridge 
between the IMS and our software developed using ROS, where ROS actions and services 
are used to command the robot and its components.   

• M-Robot connection to CoRoSect Network. The CoRoSect IMS (Information Management 
System) manages a Digital Twin (DT) for the M-Robot and its components. The command flow 
through the IMS is implemented using a customized asynchronous PUB/SUB mechanism. To 



 

22 
 

trigger the command, the first step is to modify the M-Robot DT. A post request will be sent to the 
Context Broker (CB) with the command and the value to be executed by M-Robot. This command 
information is automatically addressed to the M-Robot OPC-UA [19] Connector which maps the 
command request from the SFM to the M-Robot OPC-UA Server to be executed. The M-Robot 
OPC-UA server receives the command and executes the required ROS action and services needed 
to operate the M-Robot to carry out the required task. As the M-Robot executes the task the M-
Robot OPC-UA server dynamically updates the status of the M-robot. The M-Robot response 
and/or the commands results are, in turn, written in the M-Robot corresponding DT attribute by 
its OPC Server/Connector, and then redirected by the IMS to the SFM or to any other interested 
system. 
 

 

Figure 8: Manipulation Robot (M-Robot) deployment 

3.2.3 Intelligent Crates (I-Crates) 
I-Crate architecture has been explained in D2.4. and the interface definition in provided in D9.1. 

CoRoSect I-Crates contain Intelligent Integrated Sensors. These obtain and transfer sensor data to the 

I-Crate dedicated gateway device operating as a cell controller system.  Sensor data includes the 

following data: unique ID of the sensor, temperature in Celsius, humidity in %(RH), CO2 in ppm, NH3 in 

ppm, substrate moisture %, pH value in number and time stamp of each sensor. Figure 9 presents a 

dashboard view of the sensor values and other data. Sensor data is published with frequency which 

depends on the need of sensor data to be known. Interval between single measurements of a specific 

sensor varies between tens of seconds to several hours. This is specified in the requirement 

specification of sensors.    
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Figure 9: Capture from dashboard (CoRoSect MES) with sensor values shown 

In the final solution one or more of the mentioned sensors can be installed, according to the need. 

This means that there may exist I-Crate with only one temperature sensor (cost-efficient, low power 

consumption and easy) or I-Crate with all six sensors (expensive, higher power consumption, more 

complicated to manage). The possible varying sensor configurations, and also the harsh environment 

is taken into account when developing and implementing the HW and SW-interfaces for the I-Crate. 

The I-Crate controller consist of a gateway and included (MQTT [20]) client software. It communicates 

the I-Crate generated data directly via WiFi or through the I-Crate local server with CoRoSect MES 

through the IMS as seen in the Figure 10 below. 

 

Figure 10: I-Crate connection to CoRoSect network 

3.2.4 Automated Guided Vehicle (AGV) 
The AGV is responsible for internal logistics of pallets between Robot Cells. The AGV is designed to 

operate in the same area as the humans and will anticipate to human detection within predefined 

distance. The orders received from Route Manager will be routing from point A to Point B. Actions 

received from Floor Shop Manager for pick, drop, etc. will be performed instantly. The usability of the 

AGV will be managed by Floor Shop Manager, Floor Shop Manager will request the Route Manager to 
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send the AGV to a location, after reaching the destination Floor Shop Manager will send an action to 

the AGV. 

Route manager 

Interface between AGV and Route manager is based on MQTT/VDA50507 protocol (Figure 11). 

VDA5050 enables the integration of different automated guided vehicles in a common system and 

thus building block for Industry 4.0. Information between the AGV and Master control (Route 

Manager) is predefined and standardized according to the needs of different AGV suppliers and covers 

most of commonly used data. 

• Order: For each new order the AGV will receive current coordinates of the AGV as first 

coordinates, this is check between Route manager and the AGV that current position is 

synchronously know by both systems. Additional 2 more coordinates will be added to the first 

message. After each coordinate is received the AGV will route to next coordinate in the list, at 

the same time Route Manager will send additional coordinate to enqueue. This construction 

will prevent stop and drive motion of the AGV and result to smooth operation of the system. 

• Cancel Order: There is also Cancel Route Action added between Route Manager and AGV for 

cancelling orders, in this case the AGV will remove already received coordinates that are not 

released. When a coordinate is released to drive, AGV will move to the last released 

coordinate and will be in a status for receiving new coordinates, orders or actions. 

  

Figure 11: AGV Data flow 

Shop Floor Manager 

Interface between AGV and Shop Floor Manager is based on MQTT/AAS interface with customized 

protocol. Floor Shop Manager request route from Route Manager and the AGV will move the 

destination respectively to the route received from Route Manager. After reaching destination Floor 

Shop Manager will sends an Operations to AGV to perform (pick, drop, etc., etc.).  The AGV will reply 

that the operation is received and will be processed. Progress of the operations can be received 

through AGV status topic. When receiving a pick/drop operation, AGV will start 1500 mm in front of 

the location and use vision or reflector navigation (according to position capability of the area) to drive 

 
7 https://en.vda.de/en.html, a German interest group of the German automobile industry (manufactures and 
suppliers) 

https://en.vda.de/en.html
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and position under pallet, raising/lower the lift and drive back 1500 mm on front of the location. Other 

actions are documented in D6.6 paragraph 6 “Operations”. 

4 Manufacturing Execution System (MES) components  

This section continues with the description of the CoRoSect’s Manufacturing Execution System 

deployment (Figure 12). It relies on the WP4 outcomes, defining their components and on D2.3/D2.4 

that show its architecture. Starting from the network infrastructure and communication protocols 

introduced by the Shop Floor (Section 3.1), here are detailed the implementation of the MES interfaces 

and implemented protocols that support their addressed functionalities. 

 

Figure 12: CoRoSect’s Manufacturing Execution System (from D2.4 scenario set up) 

4.1 Information Management System (IMS): MES Interfaces 
The CoRoSect IMS, as introduced in D2.3 and D2.4, is the MES component that i) gathers, stores and 

distributes all the information produced within the CoRoSect System, to support all processes 

execution and management; and ii) supports the Digital Twins defined in WP4 for the CoRoSect’s 

components digitalisations. All the details of its covered functionalities are given in D4.1 and D4.2 and 

fully compiled in D4.3 (M30). This section provides the details for the first functional implementation 

of the D2.4 IMS architecture mapped on top of FIWARE components (Figure 13). The selected FIWARE 

enablers are configured to fulfil IMS requirements.  
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Figure 13: IMS architecture (from D2.4) mapped in FIWARE Smart Industry enablers 

As mentioned, FIWARE enablers from FIWARE Smart Industry framework has been selected to build 

the CoRoSect’s IMS. To present the implementation we can divide the main enablers into two main 

blocks, aligned with the CoRoSect’s IMS scope: 

• Protocol connectors (the southbound) provide the link between the industry common 

protocols and the NGSI REST standard [13]. This way, they present two sides; a) and industry 

proprietary interface, that directly connects with the specific manufacturer communication 

protocol; and b) the NGSI side used to connect with the FIWARE context broker. Its main 

functionality is so to collect data from the manufacturer devices, convert this into a Smart 

Data Model (a specific JSON structure) and send this data to the NGSI context broker using 

the NGSI update rest call. Advanced FIWARE IoT agents also implement the way down, 

receiving an NGSI notification payload with data for the device, converting this into a 

manufacturer protocol command and sending it to its connected device. 

• Data management interfaces implement the northbound of the IMS providing the access to 

query all the gathered data, in a synchronous and asynchronous fashion, aggregated, 

classified, and homogenised, according to the AAS models defined by Task 9.1 (I4.0) and Task 

4.3 (NGSI Smart Data Models [16]). This implementation builds interfaces for context and 

historical data retrieval.  

The approach here described for the IMS implementation is intended to enable the integration of 

potentially any protocol used to communicate with shop floor devices, by developing specific agents 

or reuse any of the existing ones. In the CoRoSect use cases, we will develop and integrate a) MQTT 

systems, oriented to IoT infrastructures; and b) OPC-UA mechatronics from Industrial environments. 

The selection of these interfaces is detailed in D9.1 [9] and is in line with the project’s objective of 

deploying an IIoT (I4.0) compliant system. 

All the information then captured and distributed by the IMS is homogenised according to an NGSI 

implementation of the CoRoSect’s Digital Twins. These will be mapped using new Smart-

Manufacturing Smart Data Models, contributing to evolve the FIWARE framework. In turn, these 

Digital Twins will be managed within the IMS scope using the NGSI interface. Full descriptions of these 

Digital Twins defined and developed in CoRoSect, and the references to the Smart Data Models’ 

corresponding models’ subset are to be provided in D4.3- IMS Implementation (M30).   
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4.1.1 MQTT Connector 
The CoRoSect’s MQTT [20] connector has been developed to support the integration of native MQTT 

devices according to the I4.0 compliant interfaces defined in D9.1 and adapt these to the NGSI data 

models and methods.  

 

Figure 14: MQTT’s connection implementation for MQTT native CoRoSect’s components. 

The CoRoSect’s MQTT infrastructure (Figure 14) relies on a broker supporting MQTTv5 protocol for 

commands’ implementation through MQTT. CoRoSect’s first version uses Eclipse Mosquitto Open 

Source MQTT broker8 to implement this common MQTT interface that supports the MQTT 

Publish/Subscribe mechanisms.  

CoRoSect’s MQTT Agent (MQTT Connector) is developed using the FIWARE IoT Agent guidelines9 to 

build our own Agent. FIWARE already provides an MQTT functional agent, but, due to the 

particularities of the MQTT Connector for I4.0 AAS, a specific agent (version 1) was designed within 

CoRoSect’s scope. 

This CoRoSect’s MQTT connector has been developed using python (exploiting the paho10 librarie) and 

is distributed and deployed using docker’s11 containers. Its main mission is to read the corresponding 

topics of each registered MQTT native component and convert the data into the corresponding NGSI 

Digital Twin, to , later, update accordinly the NGSI data model. This is the way it captures information 

from MQTT shop floor devices and drives this to the IMS. On the other way around, it receives NGSI 

notifications from the IMS publish/subscribe interface reated to registeres MQTT devices, converts 

them and fulfil the corresponding MQTT topics and publish them in the MQTT Broker. This is the basic 

mechanism to address commands from the Shop Floor Manager to the Shop Floor components. 

This way, the MQTT Connector first version is divided into two main blocks: 

• The UpStream code subscribes to the device topics that maps the device AAS to receive all 

updates from the MQTT Broker. Then, maps the data on the topic into the corresponding NGSI 

entity (Figure 15) of the Device Digital Twin, conforming the NGSI update payload (as a JSON 

file). Once this payload is checked, sends the NGSI update call to update the Digital Twin data 

in the IMS. 

 
8 https://mosquitto.org/ 
9 https://iotagent-node-lib.readthedocs.io/en/latest/howto.html 
10 https://github.com/eclipse/paho.mqtt.python 
11 https://www.docker.com/ 
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Figure 15: MQTT’s AAS mapping into NGSI entities – Digital Twin. CoRoSect’s I-Crate example 

• The DownStream code is subscribed to the IMS Context Broker, so it receives any update on 

the entity that maps a concrete device command. It identifies the device and corresponding 

topic where to publish the received commands payload and, using MQTTv5 headers, track the 

command and the response. Then, by MQTT publish/subscribe method, the MQTT Broker 

redirects this information to the driver’s controller. 

For CoRoSect’s system first version deployment, a dedicated instance for each MQTT integrated 

device is being deployed. Once its performace is tested, merging these instance in an MQTT conector 

single one would be analysed. 

4.1.2 OPC-UA Connector 
The CoRoSect’s OPC-UA [19] connector is intended to integrate native OPC devices that implement 

OPC-UA compliant servers. Each of these OPC-Server will manage the Asset Administration Shell of 

their corresponding devices (Figure 16), according to de defined I4.0 interfaces in D9.1. 
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Figure 16: OPC-UA Asset Administration Shell exposed by the OPC Server. CoRoSect’s D-Robot example. 

The CoRoSect’s OPC-UA integration infrastructure (Figure 17) relies on these OPC servers, exposed, 

each of them, through a dedicated OPC.TCP endpoint. The CoRoSect’s OPC-UA agent (OPC-UA 

Connector) follows a development process similar to that of the MQTT connector, based on the 

FIWARE IoT Agent guidelines12. FIWARE framework already provides a basic OPC-UA IoT Agent13 

which works at a different level from that the one faced by the project, but in a complementary way. 

CoRoSect is developing its own OPC-UA IoT Agent in close collaboration with the FIWARE Foundation 

and the Smart Manufacturing area, relying on the RAMI4.0 Asset Administration Shell. 

 

 
12 https://iotagent-node-lib.readthedocs.io/en/latest/howto.html 
13 https://iotagent-opcua.readthedocs.io/en/latest/ 
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Figure 17: OPC-UA’s connection implementation for OPC native CoRoSect’s components. 

This new OPC-UA connector is written in python (exploiting the Pure Python OPC-UA14 library) and it 

is distributed and deployed using docker’s15 containers. Unlike the MQTT connector, this one directly 

connects to a specific OPC Server using OPC protocol and works through alarms and events to read 

the server data. Through the same connection, it directly writes on specific server’s objects to send 

commands to the controlled device. For its design, an initial approach similar to that of the MQTT 

connector is followed. This is divided into two main paths: 

• The UpStream code is aware of the server events that update the OPC objects (device AAS) to 

read them, adapt the new information to the NGSI Digital Twin derived from its AAS and 

trigger the NGSI update in the CoRoSect’s IMS.   

• The DownStream code is subscribed to the IMS Context Broker to receive any update on the 

NGSI’s Digital Twin entity linked to a concrete command, through a NGSI notification. It reads 

the command’s inputs and writes in the corresponding server’s OPC object, transferring the 

command to the device controller. The response to the command is sent back to the IMS 

through the upstream path.  

The OPC-UA Digital Twins are defined in WP4 (D4.3). For this first system’s implementation, an specific 

instance of the CoRoSect’s OPC connector is deployed for each OPC cell and OPC native integrated 

device. 

4.1.3 NGSI Interface 
The NGSI interface is directly provided (and supported) by the FIWARE Context broker [15]. For this 

first version we’re implementing the Orion Context Broker16 (Version 3.6.0) which deploys a full 

NGSIv217 interface. The NGSI protocol works based on entities and subscriptions (notifications) (Figure 

18). The entities aggregates and stores attributes and values related to a physical asset (e.g. a device, 

a room, a robot, a sensor or an operator) and the NGSI API provides methods to create, update, modify 

and delete these entities and their attributes. The subscriptions implement a Publish/Subscribe 

mechanism to get asynchronous notifications every time an entity or set of attributes of the interest 

of the subscriber are updated. This implementation provides: 

 
14 https://python-opcua.readthedocs.io/en/latest/ 
15 https://www.docker.com/ 
16 https://fiware-orion.readthedocs.io/en/master/ 
17 https://fiware.github.io/specifications/ngsiv2/stable/ 

https://fiware-orion.readthedocs.io/en/master/
https://fiware.github.io/specifications/ngsiv2/stable/
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• NGSI Synchronous data Query/Retrieve interface: 

o [GET /v2/entities/{}] root retrieves list of entities, specific entities, list of attributes 

and values that match different criteria by id, type, or pattern matching. 

• NGSI Context Data update/modify/delete interface: 

o [POST /v2/entities/{}] root creates, append and updates entities and attributes, with 

new values. 

o [PUT /v2/entities/{}] root replaces attributes and updates attributes’ data on entities 

that match specific criteria 

o [PATCH /v2/entities/{}] root updates existing entity attributes 

o [DELETE /v2/entities/{}] root removes specific entities and or attributes 

• NGSI Asynchronous data query interface (Subscriptions) 

o GET /v2/subscriptions to list existing subscriptions 

o POST /v2/subscriptions to create a new subscription 

o GET /v2/subscriptions/{subscriptionId} to retrieve a specific subscription status 

o DELETE /v2/subscriptions/{subscriptionId} to delete a specific subscription 

o PATCH /v2/subscriptions/{subscriptionId} to update an existing subscription 

 

Figure 18: Context Broker in a nutshell18. 

The persistence layer, where all the context information, subscriptions and digital twins’ structure is 

stored, is supported by a MongoDB19 (documents-based data base) instance.   

4.1.4 Eclipse BaSyx Interface 
BaSyx is an open-source platform oriented to the implementation of Industry 4.0 in small and large 

companies interested in automation. It was born in 2016 within the “Basic System Industrie 4.0” 

(BaSys 4.0), funded by the German Federal Ministry of Education and Research (BMBF) [21] and 

currently defines an architecture of seven closely coupled component types that realize an Industry 

4.0 production chain, relying on I4.0 Asset Administration Shell (AAS). 

Eclipse BaSyx [22] offers an open-source middleware to implement this BaSys 4.0 architecture that 

covers most of the I4.0 scenarios, also within the scope of CoRoSect, such as: 

• End-to-end digitisation of the production (the shopfloor) 

• End-to-end connectivity between shopfloor and IT 

• Peer-to-peer communication between devices and the IT 

 
18 https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=82773700 
19 https://www.mongodb.com/home 
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• Digital process models, value streams, and product tracking 

• Digital twins for processes, products, and devices 

• Big data analysis of production processes 

• Automated tracing and documentation of production processes 

This framework proposes an HTTP compliant with Industry 4.0 API, intended to interact with AAS: 

BaSyx Asset Administration Shell HTTP REST-API20. This API defines a set of REST operations for reading 

and modifying AAS properties (submodels and submodel elements) and to send commands (submodel 

element operations) to an administrated device. 

 

Figure 19: CoRoSect’s BaSyx interface deployment. 

CoRoSect develops and deploys its own I4.0 compliant REST API implementation, based on the 

methods defined by BaSyx and extending it by adding subscriptions. This implementation is built on 

top of the NGSI and NGSI-TSBD API RESTs, supported by the FIWARE components to work with the 

CoRoSect’s IMS (Figure 19). The current version supports: 

AAS reading and commands (from BaSyx API) 

• [GET /aas] retrieves all AAS in IMS.  

• [GET /aas/{aas_id}] retrieves AAS info identified by its <aas_idshort>. 

• [GET /aas/{aas_id}/submodels/{submodelIdShort}] retrieves a specific submodel from a given 

AAS. 

• [GET /aas/{aas_id}/submodels/{submodelIdShort}/submodel/submodelElements] retrieves a 

specific submodel Element from a given submodel of a given AAS 

• [GET 

/aas/{aas_id}/submodels/{submodelidShort}/submodel/submodelElements/{idShort}/value] 

retrieves the value of a specified submodel element (property) 

• [GET 

/aas/{aas_id}/submodels/{submodelidShort}/submodel/submodelElements/{idShort}/outpu

t] retrieves the oputput value of a specified submodel element (operation) 

• [POST 

/aas/{aas_id}/submodels/{submodelIdShort}/submodel/submodelElements/{idShortPathTo

Operation}/invoke] sends a command (operation) to a given AAS by writing on the 

corresponding Submodel Element Operation 

Subscriptions management (CoRoSect’s BaSyx extension) 

• [POST 

/aas/{aas_id}/submodels/{submodelIdShort}/submodel/submodelElements/operation/{idSh

 
20 https://app.swaggerhub.com/apis/BaSyx/basyx_asset_administration_shell_http_rest_api/v1#/ 
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ortPathToOperation}/subscription] subscribes to a Submodel Element Operation, to track 

commands progresses 

• [POST 

/aas/{aas_id}/submodels/{submodelIdShort}/submodel/submodelElements/property/{idSho

rtPathToProperty}/subscription] subscribes to a Submodel Element Property, to track status 

of an AAS object 

• [POST /subscription] creates a custom subscription 

• [GET /subscription] retrieves all the current subscriptions and their status 

• [DELETE /subscription/{subscriptionID}] removes a specified subscription. 

4.1.5 NGSI-TSDB Interface 
The NGSI Time Series Data Base (TSDB)21 interface directly interacts with the historical datasets 

captured and stored by the IMS, structured as temporal data records. This API is used to retrieve the 

temporal evolution of specific AAS element values (properties), or commands (AAS operation outputs) 

progresses along time. 

This REST API is directly supported by the IMS’ Historical Data Manager and is specified by the NGSI-

LD [13] standard and implemented by the FIWARE QuantumLeap22 enabler. CoRoSect’s first version 

directly exposes its HTTP REST interface23 on its V0.8.3. 

4.1.6 SQL Interface 
In addition to the NGSI and the NGSI-TSBD interfaces to retrieve information form the IMS, CoRoSect’s 

system also offers an SQL-based REST API to access historical datasets. This REST endpoint is supported 

by the system’s historical SGBD, here implemented by the CrateDB24 an open-source distributed SQL 

database. This new API entry25 allows the user to perform a direct SQL sentence to read the historical 

data and structure the outcome according to its needs. 

4.2 Shop Floor Manager (SFM) and Decision Support System (DSS) 

Integration 
SFM and DSS work as a unit hand in hand together, but with separation of concerns. As explained in 

D2.4, the SFM is responsible for the overall process management of the shop floor. Human operators 

interact in first place directly with the SFM. The DSS supports the SFM in decision-making in case of a 

necessary intervention or regarding the shop floor process flow (inclusively if pre- and post-conditions 

of executable tasks are met). A more detailed description of the specific functionalities/services of the 

SFM/DSS can be found in D2.4 and D4.2.  

For the necessary integration with the IMS the BaSyx API [22] is mainly used (see Figure 20). The SFM 

invokes commands (operations) for a given asset by using the BaSyx API to execute them. The DSS 

receives, on the other hand, current operational data and responses by subscription from the IMS, 

which will then be evaluated. The DSS provides a REST API callback function for subscriptions when 

needed. All necessary AASs from the belonging shop floor components are retrieved through the IMS 

for analysis purposes. SFM & DSS will be deployed together with the IMS on the provided CoRoSect 

server (see Figure 6). 

 
21 https://ngsi-ld-tutorials.readthedocs.io/en/latest/time-series-data.html 
22 https://quantumleap.readthedocs.io/en/latest/ 
23 https://app.swaggerhub.com/apis/smartsdk/ngsi-tsdb/0.8.3 
24 https://crate.io/ 
25 https://crate.io/docs/crate/reference/en/5.1/interfaces/http.html 
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Figure 20: SFM and DSS integration 

All use cases (see D2.1) of the insect farm are defined as BPMN configuration files (describing the farm 

processes), which include all necessary tasks related to a shop floor asset (see also D4.2). These BPMN 

configuration files are directly loaded into the DSS to start the ongoing dispatching process, but the 

SFM is always in full control of executing the next process steps. 

5 Robotics’ Actions planning and control 

As depicted in D2.4 and addressed in WP6, the Robotics’Actions Planning and Control develops 

services to assist the shop floor components on specific operations, reading and exploiting data from 

several devices through the CoRoSect MES and actuating directly on the cell controllers. At this level, 

CoRoSect focuses on the handling cell’s system controllers (for handling insects and handling crates). 

Unlike the cell controllers, which expose the interface of the managed devices, these handling cell’s 

systems can read data from other cells (or devices) at the shop floor and execute automated actions 

based on the context. Also here is covered the Object’s detector, to asist the route manager and the 

common SLAM module.  

5.1 Handling cell’s system controllers  
CoRoSect project identifies two handling cells: 

• The Crates’ Handling cell: composed by the Stacking/De-Staking Robot (D-Robot) plus the 

attached devices (gripper), intended to orchestrate the specific actions to identify and move 

the crates. 

• The Insects’ Handling cell: including the Manipulation Robot (M-Robot), the Visualization 

Inspection module and the tools attached to the robot arm, built to implement actions for the 

breeding and rearing of insects within a crate. 

These handling cells are being developed toguether with the corresponding cell controllers (those 

intended for exposing their interfaces). Due to this, the CoRoSect first release doesn’t include these 

elements and will be implemented within the final release. 
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5.2 SLAM module 
As introduced in D2.4, SLAM is used for autonomic localization and mapping of AGV’s for integration 

or changes in areas. For detailed description of SLAM integration in current concept is described tin 

D6.6 Paragraph 4. 

Deployment and Integration  

SLAM is use in AGV system to decrease integration time. Initial start-up can be followed by SLAM the 

area and use for localization. Additional markers (Reflectors, Transponders, Magnets can be added to 

increase the accuracy when needed. Localization can be started after SLAM is performed. Syncing 

coordinate system with every power cycle will be needed to work with external systems. Benefit of 

the system is quick adjusting of layout with re-SLAM, starting from known area and driving to changed 

areas will adjust the layout. 

 

Figure 21: SLAM module data flow and building blocks 

5.3 Obstacles’ detector 
Obstacles detector deals with the detection of static or dynamic obstacles in the shoop floor. A 

complete description of Obstacles Detector can be found in D6.7 Safety concept for robotic systems 

(planning)(M12) and spetially in D6.8 Safety concept for robotic systems (creation) due to M24. 

Deployment 

Obstacles Detector is a pure software component asociated with one or many fixed IP cameras. It will 

be deployed in a dedicated laptop with GPU capabilities connected to the same network as the rest 

of components of CoroSect. The camera should be connected to the same network in order to have 

its streaming available. Minimal requirement for GPU will be Nvidia graphics card 1070 model. 

Camera can be physically deployed in a fixed place (in a high place with a clean view without 

obstacles). It needs electricity and can be connected to the network via Ethernet or Wifi. 

This component interfaces via MQTT with the rest of modules. Description of the interfaces can be 

found in D9.1 Integration Plan and definition of Interfaces. 
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Interfaces with the rest of the CoRoSect’s components 

Obstacles detector interfaces with Route Manager. Obstacles detector sends the detection of 

obstacles and its projection to the Route Manager. The camera sends its streaming via RTSP protocol 

(Figure 22). 

 

 
Figure 22: Obstacles detector physical view. 

6 Human-Robot Collaboration (HRC) Environment 

In D2.4 this layer is introduced as the components that combines data from the shop floor (connected 

to the IMS) to enhance its interoperability from the point of view of specific services for humans to 

interact with robots and vice versa. These components exploit ML/DL technologies to analyse human 

behaviour and develop AI models to improve learning processes (for both, human and robots); or 

detect possible obstacles and prevent accidents. Everything for a safer and more efficient human-

robot interactions. 

Within CoRoSect project, this contains part of the innovative solutions: the augmented reality 

simulation environment and the Routes’ manager.    

6.1 Augmented Reality simulation – HoloLens System 
Microsoft’s HoloLens 2 is a see-through-based augmented reality mobile device and is a core 

component on the CoRoSect system, regarding the situation awareness of users, during human-robot 

collaboration schemes.  

Covered functionalities 

A complete description of the augmented reality situation awereness module and its supported 

interface can be found in D9.1-Integration Plan and definition of interfaces.  

Deployment and Integration 

Microsoft’s HoloLens 2 (Figure 23) receives data from the necessary components through the IMS, 

utilizing an OPC-UA server corresponding to an Information Model (XML format). The HoloLens 2 AAS 

contains information regarding its capabilities and functionalities which are exchanged between the 

modules and the IMS. The required data are transferred through ROS Nodes to HoloLens 2 via Wi-Fi 

as depicted on the figure below. The aforementioned communication pipelines also work in reverse 

providing information regarding the HoloLens 2 to the IMS module.  
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Figure 23: Hololens (Augmented reality simulationb module) deployment 

 

6.2 Routes’ Manager 
This module (introduced in D2.4) deals with the creation and tracking of the routes of the robots. A 

complete description of Route Manager and its functionalities can be found in D6.7 Safety concept for 

robotic systems (planning)(M12) and spetially in D6.8 Safety concept for robotic systems (creation) due 

to M24.  

Deployment 

Route Manager is a pure software module. It will be deployed in a dedicated laptop with GPU 

capabilities connected to the same network as the rest of components of CoroSect. For obtaining a 

minimal latency it needs GPU capabilities from a dedicated graphical card (minimal Nvidia 1070). 

This component interfaces via MQTT with the rest of modules. Detailed descrition of the interfaces 

can be found in D9.1- Integration Plan and definition of Interfaces. 

Integration with other components 

Route Manager interfaces with three other components: 

• Shoop Floor Manager 

• Route Manager 

• AGV 

1) Shoop Floor Manager to/from Route manager 

• Shop Floor Manager will order a new Route to the route manager for a named AGV (e.g. 

“AGV1”) 

o As an answer, we can accept (that is, the new route has been created) or reject the 

order (we cannot create the route requested) 

• We will send a message of “route complete” when the named AGV reaches the last point of 

the route 

• The SFM can send a message of “Cancel” for the route of a named AVG in any moment (e.g. if 

the status of the AGV is not “OK”) 

2) Obstacles detector to Route Manager 

• Obstacles detector sends the detection of obstacles and its trajectory to the Route Manager. 

3) Routes manager to/from AGV 

• Routes manager sends the next points of the route to the AGV. The points include the 

orientation for the “exit” point of the next section. 

• AGV sends updates of its position periodically. 

• Optionally, the Routes manager can send a command of “stop” to the AGV. 
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7 CoRoSect’s System Deployment 

Previous sections within this deliverable present each system layer with the corresponding 

components deployment. These represent the approaches each developer has planned (and is 

following) to build and integrate its corresponding sub-system within the full CoRoSect framework. 

This first release (Figure 24) is used to test these development paths and prototypes, to ensure 

RAMI4.0 compliant interconnectivity and the proper performance of data and commands flows.  

In this line, this CoRoSect’s first release is focused on the interfaces’ implementation and deployment, 

supported by the core IMS block which will enable the data processing and distribution, including the 

commands’ flow, based on Context Publish/Subscribe mechanisms. 

For the Shop floor components, and to check their corresponding AAS (interfaces) instances, each 

developer provides their own OPC/MQTT server/gateway implementation connected to a device 

simulator (D-Robot, M-Robot, I-Crate, AGV, Route Manager, etc.) that emulates the data generated 

by the actual mechatronic and its commands responses. These simulators’ prototypes are intended to 

expose (and evaluate) their corresponding full interfaces, to be integrated with the IMS. However, and 

during the pre-pilots’ sessions (M18), basic data gathering and commands paths (simplified 

interfaces), using TCP, OPC, MQTT and ROS protocols were tested against the real devices (D10.2 [23]).  

 

Figure 24: CoRoSect’s System deployment schema – Version 1. 

For the combined Decision Support System and Shop Floor Manager, this first release is devoted to 

the data collection and commands execution tests, in order to evaluate the RAMI4.0 interfaces (BaSyx 

and Time series queries) to collect the data from the shop floor and to send specific commands (and 

retrieve the responses) to seleted devices. These are the basis to implement the manufacturing 

processes control, which will be deployed and evaluated during incoming pilots. 

Handling cells control systems, operating at OT and IT levels, are currently being developed, and will 

be part of the next release to be deployed and checked in pilots’ premises. 

All the CoRoSect components here presented are still evolving towards their final fully fuctional 

instances. These may involve some variations on the instantiation schemas to cover and implement 

all addressed funtionalites, including the hardware (robots and devices) deployment. All these 

modifications and refinements will be included in the CoRoSect’s final release .   
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7.1 Test Environment 
As one of its targets, Task 9.2 has built and provide a test environment for whole CoRoSect’s 

developers partners to perform integration tests. This test environment uses a Kubernetes26 

framework deployed in a cloud server managed by ATOS to deploy the CoRoSect’s backbone that 

enables the data sharing and the commands driving according to the defined models that implement 

the sub-systems AAS. This cloud environment allows to test and polish the integration interfaces of all 

the CoRoSect components, by providing a full instance of the CoRoSect Information Management 

System (IMS) that expose all the interfaces listed in Section 4.1.  

 

Figure 25: Cloud deployment for CoRoSect’s IMS (Test environment – version 1). 

This instance connects the Shop Floor Manager and the Decision Support System with the Shop Floor 

components’ servers; and the Routes’ manager with the AGV, creating a distributed full CoRoSect 

System that enables the remote development of each of its sub-systems. Its purpose is to evaluate 

the performance of each of the selected components of both, the could IMS first release and the sub-

systems being developed within partner’s premises, in terms of covered functionalities, RAMI4.0 

compliance and response times. The tested configurations, analysis and modifications done within 

this testbed will be used to define and deploy the CoRoSect System on farms premises, to execute and 

evaluate the pilots (WP10). 

This cloud testbed relies on docker27 containers to instantiate the required services and components, 

as derived from section 4.1 and shown in Figure 25. It also includes room for the deployment of OPC 

simulators that helps with the OPC-UA data and commands flow refinement. Currently, D-Robot is 

available and M-Robot simulator is being developed. In the same line, a set of AAS instances with 

mock-up data that replicates the data structures of a real scenario populates the testbed datasets to 

enable the queries through the exposed interfaces. These structures are also connected with the 

simulators (remote and cloud ones) to support the commands’ performance. 

 
26 https://kubernetes.io/ 
27 https://www.docker.com/ 
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As an important note, the security layer presented in D2.4 has been deployed, relying on KeyCloak28 

as Identity manager and OAuth server and Kong29 as pep-proxy, to provide access control mechanisms. 

However, this security layer has not been activated for the sake of easier integration tests since the 

testbed only works with simulated data. As soon as all the interfaces are perfectly integrated, the 

security layer will be activated.  

7.2 Orchestrator 
As mentioned in the previous section, the cloud tested is used to obtain an optimized configuration 

of the IMS components (including protocols connectors), the controllers of the different Shop Floor 

components (OT layer) and the developed software components at the IT layer included in this first 

release: Shop Floor Manager, Decision Support System, Routes’ manager, HoloLens component and 

objects’ detector. These components’ configurations and latest’s software versions developed within 

CoRoSect are distributed using containers and orchestrated using Docker-Compose30 to create a self-

deployed multi-container application. This CoRoSect’s Orchestrator, on its first version, is represented 

by a YAML file to be deployed on top of a Docker environment within the farm’s dedicated CoRoSect’s 

server. 

The purpose of this first orchestrator is to easily deploy the first release of the CoRoSect System 

presented all along this document just to be configured with the farms’ intranet parameters. The initial 

YAML file will include the centralised software components: IMS, SFM, DSS, protocol connectors, 

Route Manager, Object detector and SLAM core module. Once this is done, all the embedded cell 

controllers of the shop floor (D-Robot, M-Robot, AGV, HoloLens, etc.) will automatically get connected 

through the farm’s intranet. 

A first version of this orchestrator was tested during the pre-pilots’ sessions in M18. An evolution of 

this orchestration environment, based on Kubernetes, is envisioned for the final release of the 

CoRoSect System.     

  

 
28 https://www.keycloak.org/ 
29 https://konghq.com/ 
30 https://docs.docker.com/compose/ 
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8 Conclusions 

This document has presented the first release of the CoRoSect System, built according to the 

Advanced System Architecture designed within WP2. This ensures that this prototype is intended to 

meet the functional requirements extracted from the project scenarios defined by the end-users 

(farms), as well as the technical ones derived from the RAMI4.0 compliance and the characteristics of 

the CoRoSect’s Shop Floor devices. Note here that this is an instance of an IIoT (I4.0) compliance 

architecture that merges (as also remarked in D2.4) IoT infrastructures with industrial mechatronics, 

that demonstrates the convergence of both technologies through a common data model and common 

interfaces, which enable the full management of a heterogeneous shop floor (this will be expanded in 

D4.3). 

The first release focuses on the interconnection between the Shop Floor level and the Manufacturing 

Execution System (the MES) to implement and check the protocols, interfaces and data models 

defined during the first half of this project, that support reading data from the CoRoSect sub-systems 

(real time shop floor monitoring – Figure 26) and control them (commands execution support – Figure 

27). Here is implemented an I4.0 compliant system, according to CoRoSect architecture, that 

integrates all its components and enables the process management and data sharing required to 

develop the final versions of the Shop Floor Manager, the Decision Support System, the handling cells’ 

controllers and the human and robot collaboration systems. 

 

Figure 26: Data gathering & serving from Shop Floor to MES. 

To achive this, a testbed instance of this release is deployed in a cloud environment, accessible by 

all CoRoSect’s partners, to enable the integration checks, the interfaces improvement and the 

commands tracking. This is to foster the development and improvement of the CoRoSect processes’ 

and cells’ controlling during the second project’s stage. It also supports technical partners in the 

development and refinement of their corresponding controllers (and information systems), to get 

them fully integrated for WP10 pilots. 
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Figure 27: Commands flow from MES to Shop Floor. 

Next steps involve the evolution of this first system release towards it final deployment (M34) getting 

feedback from the pilot’s second stage: 

• Supporting Task 9.3 testings and evaluations (M27 – M36) of the integrated components and 

the integration paths (RAMI4.0 compliant) 

• Supporting and adapting to the interfaces implemented by the project’s tech partners, 

enabling also the checking of the exposed commands 

• Enabling the evaluation of interactions between components to properly perform 

manufacturing processes 

• Implementing the layout for the shop floor manager evaluation 

• Supporting pilots’ deployment and performance in farms’ premises 

All this feedback, and their impact on the final CoRoSect System Realease, will be detailed in the 

Integrated CoRoSect Platform (final) release, in M34. 

Last, but not least, this prototype has been deployed using Open-Source components from an existing 

Open framework supported by the European Commision, to implement the frameworks’ core that 

links and interconnects all subsystems. This makes the presented deployment easily portable and 

scalable, with potential to support other smart manufacturing scenarios. 
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