

Integration Plan and Definition of Interfaces

CoRoSect.eu

Ref. Ares(2023)860962 - 06/02/2023

1

Funding Scheme: Innovation Action (IA) ● Topic: H2020-ICT-46-2020

Start date of project: 01 January, 2021 ● Duration: 36 months

© CoRoSect Consortium, 2021.

Reproduction is authorised provided the source is acknowledged.

Author(s)/Organisation(s) Hochschule Emden-Leer [HSEL]

Contributor(s) HSEL, OAMK, Robotnik, AGVR, ATOS, UM and CERTH

Work Package WP9. Secure platform integration

Delivery Date (DoA) 31.12.2022

Actual Delivery Date 06.02.2023

Abstract: The document presents the first version of the Integration plan and
definition of interfaces, the document details regarding the approach
of integration of Shop floor components/assets by providing a
standard interface for each asset to expose its functionalities
according to Industry 4.0 specifications and standards. Asset
administration shells offer effortless data integration, provide
comprehensive semantic data homogenization, and convey
contextual information to achieve the objectives of CoRoSect.

Document Revision History

Date Version Author/Contributor/ Reviewer Summary of main changes

28/10/2022 0.1 Table of Contents

08/12/2022 1.0 First draft

21/12/2022 1.2 First draft with HSEL internal
revisions

08/01/2023 Final version

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the EC Services)

RE
Restricted to a group specified by the consortium (including the EC

Services)

CO Confidential, only for members of the consortium (including the EC)

2

CoRoSect Consortium

Participant
Number

Participant organisation name Short Country

1 UNIVERSITEIT MAASTRICHT UM NL

2 ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS CERTH GR

3 HOCHSCHULE EMDEN/LEER HSEL GER

4 LUONNONVARAKESKUS LUKE FIN

5 OULUN AMMATTIKORKEAKOULU OY - OULU UNIVERSITY OF APPLIED OAMK FIN

6
FUNDACION PARA LAS TECNOLOGIAS AUXILIARES DE LA

AGRICULTURA
TECNOVA ES

7 KATHOLIEKE UNIVERSITEIT LEUVEN KU LEUVEN BEL

8 HSEL IT SOLUTIONS AND SERVICES IBERIA SL ES

9 ROBOTNIK AUTOMATION SLL ROB ES

10 AGVR BV AGVR NL

11 NASEKOMO AD NASEKOMO BG

12 ENTOMOTECH SL ENTOMOTECH ES

13 ENTOCYCLE LTD ENTOCYCLE GB

14 SOCIETA AGRICOLA ITALIAN CRICKET FARM SRL ICF IT

15 INVERTAPRO AS INVERTAPRO NOR

16 FIELD LAB ROBOTICS BV FLR NL

17 Food Scale Hub FSH RS

18 Agrifood Lithuania DIH AFL LT

19 CENTRO INTERNAZIONALE DI ALTISTUDI AGRONOMICI MEDITERRANEI CIHEAM IT

LEGAL NOTICE

The information and views set out in this application form are those of the author(s) and do not
necessarily reflect the official opinion of the European Union. Neither the European Union
institutions and bodies nor any person acting on their behalf may be held responsible for the use
which may be made of the information contained therein.

3

Table of Contents
Executive Summary ... 5

1. Introduction .. 8

1.1. Scope and objectives of the deliverable .. 8

1.2. Relationships with other deliverables and tasks ... 8

1.3. Structure of the deliverable ... 10

2. Integration and Interfacing requirements .. 12

2.1. Services definition .. 12

2.2. Service Implementation by Asset Providers .. 13

2.3. Reference Architecture Model Industry 4.0 (RAMI 4.0) .. 15

2.3.1. General Considerations ... 15

2.3.2. Asset Administration Shells .. 19

2.3.3. Industry 4.0 Standard Implementation ... 23

2.3.4. Guidelines - Structure of data and Compliance (HSEL) ... 26

3. Integration and Interfacing approach ... 28

3.1. Introduction ... 28

3.2. Reference Implementation of I4.0 Service Gateway ... 30

3.2.1. Implementation of servers/publisher's component of the I4.0 Service Gateway 31

3.2.2. Implementation of the client/subscriber component of the I4.0 Service Gateway 32

3.3. Interfacing Approach ... 33

3.3.1. Generic Schema for assets interfacing .. 33

3.3.2. Information flow for interface generation .. 34

3.4. CoRoSect’s System Architecture .. 35

3.5. Standard Protocols (MQTT, OPCUA) and interfaces (API's) ... 36

4. Interfaces between Cyber physical systems and SFM .. 37

4.1.1. Identified Assets .. 40

4.1.2. Stacking/De-staking Robot (D-Robot) Interface data ... 40

4.1.3. Manipulation Robot including Visual Inspection (M-Robot/VI) .. 42

4.1.4. Intelligent Crates (I-Crates) ... 46

4.1.5. Automated Guided Vehicle (AGV) .. 47

4.1.6. Augmented Reality glasses (Hololens) .. 52

4.1.7. Route Manager ... 54

4.1.8. Object detector ... 55

5. Data Security ... 56

5.1. Data Consistency .. 56

5.2. Total Integration .. 56

4

6. Conclusion ... 57

7. Annex .. 59

7.1. Spreadsheets used to standardize the information load of the Asset Administration Shell 59

7.2. Standardized output formats of the Asset Administration Shell ... 60

References .. 61

5

Executive Summary

The deliverable details the approach towards integrating all shop floor components in a coherent

system of cyber physical components using standardized interfaces as envisaged by the Industry 4.0

consortiums. The interfaces use the Industry 4.0 recommended AAS as a building block for

implementation. An asset administration shell (AAS), as defined in the context of the Reference

Architectural Model for Industry 4.0 (RAMI 4.0), is a practical embodiment of the latest buzzword,

digital twin, and can be realized with the integration of operation technologies and information and

communication technologies. AASs offer an interoperable way to capture key information pertaining

to assets, such as intrinsic properties, operational parameters, and technical functionalities, and to

enable straightforward interaction over standardized, secure communication with other Industry 4.0

components. The goal here is to present the status quo of AAS development for the shop floor

components in the different CoRoSect Application Scenarios, to design an intuitive method for

implementing AASs, and to develop an AAS-enabled digital solution for cyber-physical applications in

the insect rearing industry that is addressed in the project.

For the development of AASs, AAS package explorer will be used. The contents of the AAS will be

based on the standards specified in the literatures of “Platform Industry 4.0” reports and publications.

Industry 4.0 compliant communication technologies will be used in implementing the interfaces from

Operation Technology (OT) level to the Information Technology (IT) level.

These defined interfaces (AAS) will expose the set of properties (datasets) and operations (commands)

supported by each CoRoSect’s component and provide the key link for the I4.0 compliant integrated

CoRoSect platform (D9.2).

6

List of Figures

Figure 1 Deliverable 9.1 Relation with other Work packages and Deliverables – Source: HSEL 10

Figure 2 Service Roles and Service Behaviours – Source: HSEL based on [5] 13

Figure 3 I4.0 Gateway for Each Asset – Source HSEL .. 13

Figure 4 AAS Internal Structure and Relationships – Source HSEL ... 14

Figure 5 Graphic View on Exchange Data Formats for the Asset Administration Shell – Source [3] 15

Figure 6 Traditional structure (Industry 3.0) and decentralized structure (Industry 4.0) - Source [2] . 16

Figure 7 RAMI 4.0 (Reference Architecture Model Industry 4.0). Source [2] 17

Figure 8 Life (“vita”) of an Asse - Source [2] ... 18

Figure 9 CoRoSect I4.0 Network view (AAS perspective) - Source Deliverable 2.3 20

Figure 10 Metainformation model of AAS - Source: [2] ... 20

Figure 11 Types of Information exchange via Asset Administration Shells – Source: [3] 21

Figure 12 The different assets integrated with the IMS – Source HSEL ... 29

Figure 13 Integration Approach for Assets in CoRoSect – Source HSEL ... 30

Figure 14 A Reference Implementation of Asset I4.0 Service Gateway – Source HSEL........................ 31

Figure 15 MQTT and OPCUA server implementation – Source HSEL .. 32

Figure 16 REST API Server Application – Source HSEL .. 33

Figure 17 Information flow for Interface creation – Source HSEL. ... 34

Figure 18 Implementation steps for AAS deployment – Source HSEL based on [22] 34

Figure 19 RAMI 4.0 compliant Communication protocols – Source [3] ... 36

Figure 20 MQTT structure diagram – Source [24] .. 36

Figure 21 OPC UA Server - Client architecture - Source [25] .. 37

Figure 22 Reference excel document for each asset – Example Image – Source Screenshot 38

Figure 23 AASX Package Explorer UI – Example image – Source Screenshot 39

Figure 24 CoRoSect Interfaces implementation communication scheme. - Source ? 40

7

List of Abbreviations and Acronyms

AAS Asset Administration Shell

API Application Program Interface

AGV Autonomous Guided Vehicle

DIN SPEC Deutsches Institut für Normung Specification

DoA Document of Action

DoW Document of Work

D-Robot Stacking - De-stacking Robot

DSS Decision Support System

HSEL Hochschule Emden Leer

I4.0 Industry 4.0

ICPS Industrial Cyber-Physical System

I-Crate Intelligent Crate

IEC International Electrotechnical Commission

IIoT Industrial IoT

IMS Information Management System

IoT Internet of Things

ISA International Society of Automation

IT Information Technologies

JSON JavaScript Object Notation

M12 Month 12

MES Manufacturing Execution System

MQTT Message Queue Telemetry Transport

M-Robot Manipulation-Robot

NGSI Next Generation Systems Interfaces

OAuth Open Authorization

OPC-UA OLE (Object Linking and Embedding) for Process Control-Unified Architecture

OT Operational Technology levels

RAMI4.0 Reference Architecture Model for I4.0

REST API Representational state transfer Application Program Interface

ROS Robot Operating System

SC Service Consumer

SV Service Provider

SFM Shop Floor Manager

SoA Service oriented Architecture

SQL Structured Query Language

XML Extendible Markup Language

8

1. Introduction
1.1. Scope and objectives of the deliverable

According to CoRoSect’s DoA, the project “will bring new insight to automated insect farming

by introducing a novel digitalized integrated robotic solution based on the Reference Architecture

Model Industry 4.0 (RAMI4.0) implemented as an Industrial Cyber-Physical System (ICPS) to be able to

support all phases of the insects’ lifecycle inside insect farms. The fundamental aim of the system (and

the great innovation it provides) will be to provide repetitive but also cognitively and physically

demanding tasks, like transferring and handling of crates (de-stacking and stacking), monitoring of

environmental conditions, larvae separation/detection, insect feeding, which require increased

manual effort or continuous human supervision, with correspondingly automatic robotic-based

procedures, as service in an I40-compliant Information-Communication Infrastructure”.

The main objective of this deliverable is to present the Integration Plan and define the software

interfaces that support the main objective addressed here above.

The task also recommends the use of safety standards to implement a “collaboration environment,

where humans and robots will harmoniously share and undertake at the same time different

processing and manipulation tasks, targeting the application case of insect farming” on the basis of

requirement provided by end-users, one of the core objectives of this implementation, is to create a

safe working environment where the humans work in association with robots to navigate and

circumvent the existing hazardous environments in the insect farming world.

The current industrial scenario demands that the manufacturing world exploits the technology

available in the IIoT infrastructure (e.g., Smart systems) and communication frameworks to perform

critical tasks automatically and with the ability to self-monitor and self-correct. This deliverable

analyses the interfaces from the shop floor component providers. Moreover, it provides an IIoT

reference framework that can be implemented in different use cases.

The RAMI 4.0 [1] serves as a framework for the implementation of interfaces and integration of assets

and systems applying the service-oriented architecture paradigm. The 6 layers of the RAMI 4.0

digitalization dimension are referenced in this implementation along with the value stream and life

cycle dimension – IEC 62890 [2]. The key aspect is to integrate the systems from the shop floor (OT)

with the systems from the IT level, such as e.g., ERP, MES, etc.) using standard communication

protocols and frameworks. The integration of OT and IT requires, among other features, portability,

connectivity and interoperability.

The Asset Administration Shell (AAS) of each asset from the insect production environment is

recommended as digitalization and integration technology by the DIN SPEC 91345 [1] and the

guidelines described in [3], i.e., turning assets into I4.0 components.

1.2. Relationships with other deliverables and tasks
The integration plan proposed by this deliverable will act as a pipeline for data flow from assets

between OT and IT levels of the hierarchy level of ISA 95, when it is mapped into the information-

control-automation infrastructure of the CoRoSect environment. Work packages in this project use

asset data for several functionalities such as orchestration, safety, security, process-analysis and -

planning, function-testing, etc.

The relationship of WP9 with other Work packages is detailed below and also in Figure 1.

9

1. WP2 (Use-cases, user requirements and system architectures): Integration plan requires

a defined system architecture proposed in WP2 and this work package is closely

interlinked with WP9 Task 9.1, Task 2.3 (System architecture) [4] requires the proposed

interfaces and vice versa. As the CoRoSect architecture will need both the Robots and

Humans working in a harmonious manner, the Service oriented Information management

system needs to ensure both the software and hardware assets stay updated and co-

ordinated.

2. WP4 (Farm-level modelling and orchestration): requires the orchestration of functions of

the CoRoSect system, the MES requires the integration of data generated by the Cyber

physical assets to optimize workflows in farms, the service-oriented Information

management system will work based on the integration of asset data using standard

industrial protocols.

3. WP5 deals with vision tasks related to perceiving the surrounding work environment in

the farms, to this end the task involves defining the interfaces for object detection and VR

headset (Augmented Reality glasses (Hololens)).

4. WP6 (Robotic actions planning and control) As humans and Robots coexist in the CoRoSect

ecosystem, the safety aspect is vital, Task 6.4 requires data from Robots, I-Crates, status

of the proposed and current tasks to optimize the plan and route the robots will take. The

implemented controllers on these assets will expose services and receive information

from MES.

5. WP7 (Cognitive robots and smart mechatronics) requires the Robot Cell communicating

with other systems from other work packages. This WP tasks require integration of data

that can be used as information for manipulation of robots based on information received

by their corresponding controllers and sensors (ICRATEs) that are implemented to

integrate the CoRoSect System.

6. WP8 deals with AGV route planning, a mechanism for safe Human Robot collaborations.

So, this deliverable provides interfaces that are needed to implement the tasks in WP8.

7. WP10 requires testing and evaluation of CoRoSect system interfaces instance at Insect

farms across Europe. This step goes a long way into implementing the interfaces

developed in real-world like scenarios.

10

Figure 1 Deliverable 9.1 Relation with other Work packages and Deliverables – Source: HSEL

1.3. Structure of the deliverable
The deliverable requires the specification of the interfaces of the Cyber physical systems (CPS) OT

assets with the IT assets, IMS, MES, SFM, DSS. These specifications must follow a set of standards, that

the Industry 4.0 consortium specified in the RAMI 4.0 reference architecture, and the guidelines of

the Industry 4.0 platform for developing AAS’s and validating the results from these implementations.

Hence, the structure of the deliverable is as follows:

Section 2: Integration and Interfacing requirements

• Definition of services and an I4.0 Service Gateway; In order to create compatible interfaces

within a service-oriented architecture compliant with the digitalized infrastructure.

• Introduction of the RAMI 4.0 reference architecture; how the insect farming industry can be

benefited by following and incorporating Industry 4.0 technologies, for example: how IoT

devices such as sensors embedded in I-Crates integrate with other farm’s shop floor

components to form a coherent system of Cyber-Physical Systems in a digitalized production

environment.

• Information about (i) the implementation of standards proposed by the platform Industry 4.0

for harmonizing the interfaces, (ii) the implementation of safety features for human robot

collaboration, (iii) the development of AAS’s for each asset with standards, sub-models and

corresponding files to implement the interfaces before finally concluding on the structure of

the interfaces (asset data structure in payloads).

Section 3: Integration and Interfacing approach

• Definition of the integration approach, based on the proposed CoRoSect System architecture

(See deliverable 2.4). The approach covers how the interfaces are implemented for each asset,

which are the main communication protocols that are used for implementing the interfaces,

how is the interfacing with IMS and MES using NGSI v2 API to query, published and subscribed

to the context information from and to the assets.

11

• Brief description of the interfaces developed by the Shop floor component (asset) providers.

Based on these, a description is defined then regarding the I4.0 service gateway each

component (asset).

Section 4: Conclusion

• This section details the conclusion of the planned integration. It also briefs how the project

leverages the benefits of implementing I4.0 standards and also describes the benefits of using

this implementation in a relevant use case scenario.

12

2. Integration and Interfacing requirements
2.1. Services definition
The OASIS RM SOA [4] states that “a service is a mechanism to enable access to one or more

capabilities where the access is provided by a prescribed interface and is exercised consistent with

constraints and policies as specified by the service description”

Additionally, services in the SoA are defined by their:

1. Service interface

2. Service behaviour

A Service interface is specified by the syntax and semantics of the call events, and their effects on the

information and physical world of the service participants. (E.g., by using Asset Administration Shell).

Service behaviour is specified by one or more interactions (exchange of messages) that happen

between components (E.g., Publish/Subscribe (supported by MQTT) or Request/Reply (supported by

OPC-UA & REST API)).

Moreover, when interacting through a “service”, the interacting components are called service

participants.

There are two roles that service participants can play when being involved in services:

• A service consumer (SC) role: when initiating a service call by issuing an operation command

to the service provider or by subscribing/requesting the data from the service provider.

• A service provider (SP) role: when replying/publishing the data for service consumers to

consume or receiving an operational command from service consumers and reacting to it.

NOTE-Participants can act in both roles in parallel with respect to different services.

From the implementation point of view, the role of the service provider is implemented by a:

• Server/Publisher –E.g., MQTT Publisher, OPC-UA Server, REST API Server

And the role of a service consumer is implemented by a:

• Client / Subscriber –E.g., MQTT Subscriber, OPC-UA Client, REST API Client

A diagrammatic representation of service behaviors and service participant roles can be seen in Figure

2.

13

Figure 2 Service Roles and Service Behaviours – Source: HSEL based on [5]

Consequently, based on the description of services and their implementation techniques given above,

it should be understood that for each physical asset that would like to operate in SoA manner, a

generic I4.0 Service Gateway (Figure 3) which consists of a server/publisher (performing a role of

Service Provider) and a client/subscriber (performing a role of a Service Consumer) is required. This

service Gateway connects to the Asset Controller/ Gateway using the propriety protocol (defined by

the asset provider) but offers the data and capabilities associated to those assets using a defined

service-interface and SoA oriented communication protocols like OPC-UA, MQTT or REST API.

Figure 3 I4.0 Gateway for Each Asset – Source HSEL

2.2. Service Implementation by Asset Providers
From the implementation point of view, since each tech/asset provider (UM & CERTH for M-Robot,

CERTH for Augmented Reality glasses (Hololens), ATOS for Object Detector & Route Manager, AGVR

for AGV, Robotnik for D-Robot, OAMK for I-CRATES and HSEL for SFM & DSS) will need to implement

this I4.0 Service Gateway. Choosing a communication technology through which its Server/ Publisher

14

will be implemented is needed. These can range from RAMI4.0 Layer 3 compatible communication

technologies like OPC-UA Server, REST API Server or MQTT Publisher. However, the Server/Publisher

not only needs a communication protocol but also needs a service interface that defines the properties

and the operations for which the server would be able to publish data or take requests from service

consumers. This is described using the RAMI 4.0 Layer 4 compatible technology i.e., the Asset

Administration Shell (AAS). An AAS as a service interface is composed of an AAS description, an Asset

Description and a Sub-models Description. The Sub-model is the logical placeholder for containing the

description of all the properties and functions for which the asset/service provider would be able to

share data or get commands to act on. An internal composition of AAS is described in Figure 4.

Figure 4 AAS Internal Structure and Relationships – Source HSEL

For the sake of implementation, this AAS is serialized into a compatible format i.e., JSON or OPCUA-

Information Model (XML) based on the Service communication protocol (Figure 5). The service

interface defined using AAS is also known as a Digital Twin of the Asset because it represents all the

capabilities and data offered by the asset (service provider) in a standardized digital format.

The MQTT and REST API uses JSON format to describe their data and functions (service interface) and

the OPC-UA uses OPC-UA Information Model (XML) to describe its data and functions (service

interface). Thus, the AAS is transformed into respective AAS representation & data exchange formats

based on the chosen communication protocol.

15

Figure 5 Graphic View on Exchange Data Formats for the Asset Administration Shell – Source [3]

2.3. Reference Architecture Model Industry 4.0 (RAMI 4.0)

2.3.1. General Considerations
The aim of this deliverable “implementing a coherent system” relies on assets being able to

understand each other through a common language, usually called “I4.0 language“, a common

communication structure, the semantics of data and its standardization.

Traditionally, the systems that are part of organizations and/or companies maintain a hierarchical

structure according to functional attributes. The criteria and considerations of these structures could

be defined using ISA 95 / IEC 62264 [6] and ISA 88 / IEC 61512 [7] as a reference. For proper operation,

a hierarchical structure is required (Figure 6 a), but at the level of information flow, Industry 4.0

proposes a more harmonious integration between the different elements that are part of that

company/organization. It seeks the interaction of systems in which there is no hierarchy for the

exchange of information (Figure 6 b). This implies, for example, that a production system can exchange

information with a plant team to fulfill a given requirement (based on needs) for a well-defined

business.

16

(a) (b)

Figure 6 Traditional structure (Industry 3.0) and decentralized structure (Industry 4.0) - Source [2]

Some limitations are in Hardware and Software components and their functionalities, functionalities

that do not allow data and information portability and scalability of the limited services that these

components offer. The process flows follow a set of predefined sequences, the systems are not

reconfigurable on the fly and take a lot of time to make adaptations to new processes. The missing

functionalities have a direct bearing on the efficiency of production in today’s insect farms. Thus, to

have these missing functionalities covered, digitalization and networking of components in the OT and

IT level is performed. There is also the business part where the functionalities of components are used

for business.

Any digitization process, under the principles proposed by Industry 4.0, requires a reference

framework. These frameworks usually lay the foundations on which to build the different

implementation structures on which a specific business is developed through prerequisites defined by

different use cases. From the digitization point of view, and in order to develop an appropriate service

orchestration scenario and somehow standardize the digitization process, it is proposed (among other

existing frameworks) the use of RAMI 4.0 (Reference Architecture Model Industry 4.0) that is shown

in the Figure 7.

17

Figure 7 RAMI 4.0 (Reference Architecture Model Industry 4.0). Source [2]

As can be seen in the Figure 7, RAMI 4.0 is a three-dimensional framework composed of three

fundamental axes:

• Lifecycle Value Stream Axis: Based on IEC 62890 [1]. Which considers the aspects referred

to the life cycle of the different Assets considered in the digitization process.

• Hierarchy levels Axis: Based on IEC 62264 [8] and IEC 61512 [9], both also related to ISA 95

[6] and ISA 88 [7] respectively. This means that the structural aspects in terms of functional

structures, raised in Industry 3.0, are considered to build this axis.

• Vertical Axis (Layers): This axis proposes how to approach the digitization process once the

potential asset(s) have been identified to cover the specific requirements defined by the

different businesses or needs defined in advance. As can be seen, this axis includes all

aspects related to the integration of the physical world with the digital world (integration),

the form of communication of the information (Communication), the structure of the

information (Information), the required functions (Functional) and the business(es) defined

within this implementation structure (Business).

To connect a physical or digital thing in the digital world, the RAMI 4.0 provides the concept of the

Asset Administration Shell (AAS) in order to create an I4.0 Component. This element is a composition

of an Asset and its AAS and is the basic element of a Service-Oriented Architecture compliant

digitalization infrastructure. An asset can be a sensor, a robot, a production cell, or the whole farm

itself, which can have its own AAS. This AAS serves as an interoperable digital twin that can share the

static and dynamic information associated with the asset, with any other networked AAS, using a I4.0

standard protocol, a standardized structured form and defined formats (E.g., MQTT, OPCUA, REST).

The introduction to RAMI 4.0 has already been made in Deliverable 2.3, section 2.1.2, so it is suggested

to refer to that document for more details.

2.3.1.1. Lifecycle Value Stream Axis (IEC 62890)

From the digitization point of view, it is essential to consider all the life-phases of the assets during

their life, from the time they are created from a purchase order, by a partner in the value chain, to

their final disposal by the same or another partner in the chain. The Figure 8 shows a typical life cycle

as provided by the IEC 62890 [2].

18

Figure 8 Life (“vita”) of an Asse - Source [2]

As can be seen in Figure 8, the life cycle of an Asset can be generalized into 7 stages (From
Commissioning to Disposal). Each of these stages corresponds to a specific moment in the life of an
asset within an asset's life cycle.

Considerations about the Life-Cycle of an Asset, are very important to the decision-making process,
because in each stage of the Asset, the information can be interconnected and can be related to obtain
a certain purpose and improve the process.

From the interaction of the information of the different stages of the life cycle of an asset, a wide

range of possibilities arise to establish new business between all the partners of the value chain,

exchanging in this case, valuable information of the asset within a service-oriented architecture.

An asset, in the case of this project, can be considered as any object that has value for the company,

from an insect, the equipment that is part of the farm, the robots, the operators, the sector in general,

the whole factory, etc.

The IEC 62890 [2], proposes interesting strategies to address the different life cycles of products. The

standard also considers the different life cycles of the components that are part of the products. Based

on this, information of components that are part of a robot, for example, can be considered,

individualized and exposed in a service-oriented architecture, each with its specific life cycle and

related partner.

2.3.1.2. Hierarchy Levels (IEC 62264/IEC 61512)

This axis of RAMI 4.0 considers the organizational structure based on the DIN EN/IEC 62264 [8] and

DIN EN/IEC 61512 [9] standards, both of which are derived from ISA 95 [6] and ISA 88 [7] respectively.

RAMI 4.0 proposes this axis in order to correctly position the different assets within the organization

of which they are a part. Although the Industry 4.0 approach proposes flexible structures, the

hierarchy is necessary to know how the interaction of information and the different criteria for

grouping assets must be established for the different use cases.

2.3.1.3. Vertical Layers

The approach to the vertical layers of RAMI 4.0 will depend on the positioning of the assets in relation

to the horizontal axes referring to the life cycle and the hierarchy axis.

The procedure to address these layers is a complex process that depends on many criteria and

considerations of the defined use case. Each of the layers (Business, Functional, Information,

Communication, Integration and Asset. See Figure 7) defines a standardized way and covers a specific

functionality to address each of the aspects that are necessary to cover the digitization process of a

given asset.

The way to go through the layers can be bottom-up or top-down. Generally, the most recommended

way is top-down as it starts from the needs of a particular business and discovers the assets needed

to satisfy them.

19

The way in which the layers are to be addressed can be found in the DIN SPEC 91345 [2].

2.3.2. Asset Administration Shells
2.3.2.1. Definition

Based on [3], the Asset Administration Shell (AAS) is “standardized digital representation of an asset”

and has the following attributes:

• Integrates the asset into the Industry 4.0 communication, providing a standardized and

secure communication interface.

• Is addressable in the network and uniquely identifies the asset (e.g., through a unique

Identifier like E-Class or similar).

• Allows controllable access to all information of the object that represents.

• Can integrate different kinds of assets structuring the information in a common way.

• Maps the entire life cycle of products, devices, machines and plants through different

representation of the assets that the AAS represent. (It means through different Digital Twins

conforming a Digital Thread of a specific digitalized Asset).

• It is composed of a well-defined and standardized structure in order to structure the

information.

• The Asset Administration Shell is the proposed way to create I4.0 components.

2.3.2.2. Mapping the AAS in the Reference Architecture Model Industry 4.0 (RAMI 4.0)

According to the vertical layers of RAMI 4.0, the Asset Administration Shell (AAS), can be
defined in the "Information" vertical layer, exposing ("Communication" Layer) in a structured,
common and specific way, the functions ("Functional" Layer) of the given use case ("Business" Layer).
Then, for this information to be enriched and integrated into the implementation structure proposed
from the asset(s) in question, the "Asset", "Integration" and "Communication" layers must be defined.
As mentioned above, the AAS covers a certain layer of the RAMI 4.0 (Information), but since the
information is somehow interacting in all layers, it is possible to perform an analysis of how the AAS
interacts with the layers proposed by the reference model adopted for the project (See Figure 7).

• Layer 1 – Asset: Covers the representation of the asset that is placed in the hierarchy level axis
and the life-Cycle axis.

• Layer 2 – Integration: Corresponds to the integration of physical asset into the digital world
(AAS as a digital twin).

• Layer 3 – Communication: How can the data be accessed in the internet world, in industries it
is the mechanism, the protocol used for transferring data between components.

• Layer 4 – Information: is the information layer where the standardised data models,
information packages are processed and make it available as useful and valuable information
in the form of services.

• Layer 5 – Functional: Defines the functionalities that are required to fulfil the defined business
use case through the defined assets.

• Layer 6 – Business: In this case, the digitalized and networked asset is able to perform service-
oriented business applications using the functions provided by the Layer 5 and the digitalized
data and information contained in the Layer 4. Moreover, as applied in CoRoSect project, the
AAS must be exposed in a common and standardized way so that orchestration is possible and
an intelligent decision-making process for insect production can be defined and executed.

In the implementation addressed in CoRoSect, the light weight Information Management system
collects the context data from the interfaces by using a set of API’s, the information is then served to
both the OT and IT levels, including also the connected world (supply chain and collaborative
enterprise networks).

20

2.3.2.3. Logical View of the AAS

As described earlier, the digitalised assets will communicate their services (data and

information including functions/applications) in a common I4.0 network. This will flatten the hierarchy

as the assets in IT and OT layer will now be able to communicate in a coherent network. The outline

of the I4.0 network is shown in the Figure 9.

Figure 9 CoRoSect I4.0 Network view (AAS perspective) - Source Deliverable 2.3

2.3.2.4. Specifications of AAS

The information stored in the AAS should be exchanged in a meaningful way between assets

and or components, so this information has to be first processed and structured. In order to make

specifications there are a few structural principles that need to be detailed:

• Information metamodel of AAS and its Sub-models.

• Exchange formats for information transport.

• Identifiers.

• Access control.

• Mapping of AAS to suitable technologies such as OPC UA, MQTT, JSON, XML etc.

Information metamodel of AAS

Metainformation Model of the AAS describes how the information needs to be modelled, it is as

stated in Figure 10:

Figure 10 Metainformation model of AAS - Source: [2]

21

The AAS information model is therefore independent of technology, it's just a representation of data

in a standardised structure. Information model just specifies how to model the information.

Exchange formats

The AAS information exchange between components via file exchange, can be done in 3 ways as

depicted in Figure 11:

1. File Exchange – A standardized file like JSON or XML, inside is some valuable information

stored, this is passive AAS

2. The information model is also the basis for exchanging information via a standardised API. In

this case it is reactive AAS, where a set of API’s call for information to be exchanged.

3. A more pro-active approach is the exchange of AAS via a secure I4.0 communication network

and protocol as an AAS itself.

Figure 11 Types of Information exchange via Asset Administration Shells – Source: [3]

In this case, the asset administration shell data is accessed using a specific API that will be part of the

implementation.

Identifiers

Identifiers are required for unique identification of elements within the smart manufacturing, the

insect farm Assets digital representations are to be identified uniquely, especially identification is

required for:

• AAS’s

• Assets

• Sub-models

• Sub-model elements

o Properties

o Operations

o Etc.

22

This unique identification helps in accurately placing the data to relate for the interfaces to identify

and place the context data. The linking of data for various other entities to identify is very critical for

exchanging information via the 3 methods detailed above.

Access Control

The integrity of the AAS should be considered depending on the requirement. The properties,

data and functions will contain information that all value creation partners or components might not

require. Hence, the structure of AAS should take into account the aspects of security, access

protection, visibility, identity and authorization. A “no security” status can also be implemented if the

risk analysis permits it.

Mapping

For the realisation of a “Novel digitalised integrated robotic solution based on Reference

Architecture (RAMI 4.0)” sharing of information between different systems is crucial. For usage of data

in different life cycle phases of an asset different data formats are recommended to be used [3]. For

each of these format’s serializations and mappings of AAS are provided as a JSON and XML format.

The shop floor component providers will use this serialisation file of each Sub-Model of their asset to

publish information via the OPC UA or MQTT server that are built on their machines.

Each shop floor component has their own servers that connect to the Data Management

system (IMS) via a secure end point. In general, for applications to be connected together a connector

is needed. The IMS connects the OT and IT levels of the farm using a set of standard APIs. The API uses

the JSON Payload published by the asset servers. The received context data is then modelled,

processed, stored in the IMS system. The context broker then Publishes/subscribes to data on demand

to and from the Shop floor manager guided by the Decision Support system. The IMS therefore

manages the Digital twins (Through each AAS) as Digitalized Information Models.

The IMS and its implementation can be reached in Task 4.3 and its corresponding deliverable. A brief

overview will be given in Chapter 3 of this referred document.

2.3.2.5. Required elements of the AAS

Sub-Models

AAS is made up of a series of Sub-Models. These represent different aspects of the asset
concerned, the aim is to standardise one Sub-model for each aspect [10], for example: the aspect of
“safety” has one Sub-Model, so does condition monitoring, nameplate, technical data, communication
etc. There are many standards that can be used to describe the attributes, properties and information
that will need to be stored to describe the different Sub-Models of an Asset. It is recommended,
whenever possible, to base the information defined according to the standards in order to ensure
interoperability and language compatibility between the different partners in the chain.

Each Sub-Model of the asset has its own ID defined as IDShort, the standardised Sub-Models

contain a structure quantity of properties that can refer to data and functions, these properties are

the constantly readable directories of key information. The standard Sub-Models implemented for the

shop floor components are as follows:

• Nameplate. Used to describe general attributes and properties of a certain Asset like,

manufacturer related data as an example.

• TechnicalData. Contains technical data related to the asset in question.

• OperationalData. Sub-Model on which different parameters can be defined on the assets. Also

defined to store specific data related to real-time measurements.

23

• OperationCapability. Used to store the Asset's available operations. The properties defined in this

model, called operations, are created to define the different inputs and outputs.

• AssetConditionMonitoring. Sub-Model used to perform condition monitoring.

• BillOfMaterials. Aims at sharing information in an interoperable way providing a view of contained

material that composes the asset.

The Sub-Model and its elements such as properties, files, operations, etc. must be clearly identified

with a unique identifier. Global identifiers are defined in the ISO 29002-5 [11] (e.g., eCl@ss and IEC

61360 Common data dictionaries) and URI’s (e.g., Ontologies)

Properties and Operations

Properties and operations (property that admits inputs and outputs) are objects that generally

form part of the Sub-Models and they are the ones that usually store punctual values or functions as

end-points (operations). Properties are the set of data required to be structured and serve as a

function of the use case(s).

Concept Descriptions

Based on the “Details of the Asset Administration Shell – Part 1” [3], a Concept description can be

defined as an “unit of knowledge created by a unique combination of characteristics”.

This implies that these attributes are of particular importance when a specific knowledge value is to

be assigned to a property or element (Sub-Model). For example, a property called "Temperature" can

be defined and its corresponding concept description would be the unit of measurement (e.g., °C or

°F).

2.3.2.6. RAMI4.0 compliant Interfaces

Implementation of standards for communication of asset data need to comply with Industry4.0

standard protocols, such as OPC UA, MQTT and Web services (through REST API, for example). The

options are limited to communication types that allow information sharing within a service-oriented

architecture. Within the context of Industry 4.0 and a service-oriented architecture, these protocols

and forms of communication are expected to have specific attributes, such as flexibility, atomization,

abstraction, autonomy, discoverability, standardized service contract, reusability or composability,

among others.

Figure 5 shows the different exchange formats supported by RAMI 4.0. JSON is commonly used in

MQTT and Web Services (REST-API) and in OPC UA, XML (OPC UA Node set) is often used. In any case,

the final exchange formats will depend very much on the implementations of each of the data

exchange protocols/formats.

In this project, the OT components, the components at field level such as D-Robot [#9 Robotnik], M-

Robot/VI [#1 UM], Augmented Reality glasses (Hololens) [#2 - CERTH], will use OPC UA as a protocol

for implementing the interfaces, the rest of the assets such as AGV [#10 AGVR], I-Crates [#5 OAMK],

Route Manager and Object detector [#8 - ATOS] will use MQTT as a communication interface. The IT

components like IMS, DSS, SFM will use Webservices (API’s). All these assets will communicate to each

other by using IMS component, the context broker.

2.3.3. Industry 4.0 Standard Implementation
One of the core principles/visions of this implementation of I4.0 in CoRoSect is “to give its

components and production processes the capability to adapt to production needs and more efficient

allocation of resources”. This is based on a number of emerging technologies such as IoT, Artificial

intelligence, Robotisation and the concept of Service-oriented Architecture. To say, a production

24

process is industry 4.0 compliant a set of attributes/functionalities needs to be associated with the

processes such as, portability (data), system interoperability, product customisation, collaborative

robots and robot cells, interconnection and security, Artificial intelligence adoption. How the

CoRoSect´s structure effectively applies these concepts will be discussed in detail.

2.3.3.1. Portability and Interoperability

With the creation of the Assets administration shell for each Asset that is part of the project,

the creation of an atomized I4.0 component is achieved, which allows to expose basic functionalities

in order to make the orchestration process possible.

Portability is achieved by using standardized information exchange formats such as JSON and XML,

which can be serialized and deserialized, for the interaction of the information they expose. In turn,

the services for information access are performed in particular platforms in the cloud (FIWARE [12],

BaSyX [13]), but the information exchange is done through standardized protocols which are

compatible with the concepts that Industry 4.0, using RAMI 4.0 as a reference, proposes.

Interoperability is achieved by using compatible forms of information exchange between the different

Assets. Since there is a great diversity of Assets, such as robots, Augmented Reality glasses (Hololens)

[#2 - CERTH], etc., it is necessary to incorporate components (NGSI) in order to adapt, make

compatible and centralize the exchange of information between all the common elements in the

network. Then, through the different IoT agents, the interaction of information is achieved through

the different Asset Administration Shells that represent specific information of each asset.

More details on how interoperability and portability between the different assets, that are part of the

project has been achieved, can be found in deliverable “Deliverable 9.2 - Integration CoRoSect

Platform I”.

2.3.3.2. Product Customisation

The concept of flexible production requires a service-oriented architecture. This implies that

the assets that are part of the organization should have the capacity and the ability to expose their

basic functionalities through a common network (that could be local or in the cloud).

Then, in the cace of possible variations in a given product, the production system can adapt (within a

certain range) to possible variations in demand.

This is also linked to reconfigurable systems, i.e., that support parameterization based on different

strategies, such as artificial intelligence, neural networks, etc., i.e., parameterization strategies based

on data Analytics. Parameterization processes can also be defined in multiple ways. Therefore,t by

using data Analytics, multiple advantages could be obtained.

2.3.3.3. Collaborative Robots and Robot Cells

By combining the capabilities and new functionalities obtained with service-oriented

architectures and in combination with flexible production systems, the concept of collaborative work

can be defined among the assets that are part of the project (Organization).

Particularly robots, whether they collaborate or working in a fixed cell, within a service-oriented

structure, can adapt and reconfigure themselves according to the requirements of their

“environment”. Environment in this case refers to all the services found in the common network

accessed by the robots.

Thus, a correctly digitalized Asset, working in a service-oriented architecture, is sensitive to what is

happening in its environment, which allows it to execute and consume “Available Functions”. Here

25

the mistake should not be made of defining it as “automatization”. Automatization itself is already

performed by the robot(s). With the digitalization process, the necessary support is given to guide in

the best way all the resources for the defined business (through the use cases) where these Assets

perform their functions.

2.3.3.4. Security considerations

Referring to safety considerations and the IEC 61511 [14] and IEC 62061 [15] standards, the

following work packages are mentioned:

• Task 6.7: Safety concept for robotic systems (planning).

• Task 6.8: Safety concept for robotic systems (documentation).

• Task 6.9: Safety concept for robotic systems (final).

In the deliverables corresponding to these activities, bearing in mind that some of them are under

development, the specifications required in this aspect can be found.

From the point of view of digitalization, the proposed orchestration of services can be very useful to

prevent risk situations by introducing specific functionalities for this purpose. For this purpose, specific

functionalities can be defined as attributes or elements of a Sub-Model within an asset administration

shell, in order to structure the information required for a possible security orchestration to support

the control systems, if any. Otherwise, security issues can be implemented in various ways according

to the asset's ability to communicate and present information [2].

2.3.3.5. Considerations based on IEC 62453 and IEC 61804

From the point of view of Industry 4.0, the integration of the different components (Assets)

that are part of the CoRoSect project, must be carried out using specifications compatible with the

reference architecture on which the digitalization process is based (RAMI 4.0).

From the Industry 4.0 point of view, the integration of the different components (Assets) that are part

of the CoRoSect project must be carried out using the specifications compatible with what is proposed

by the reference architecture on which the digitization process is based (RAMI 4.0, see Figure 7). By

establishing the correct specifications of the integration, communication and information layer, and

having previously defined the business and functional layers, any asset, regardless of its organizational

hierarchy, can be interconnected with others and expose its functionalities in a service-oriented

architecture.

On the other hand, through the definition of the Asset Administration Shell (AAS), it is possible to

structure and standardize the information of the representative data of the Asset, through its digital

Twin, for the specific use case of this project.

In turn, through the definition of the Asset Administration Shell (AAS), it is possible to structure and

standardize the information of the representative data of the Asset, through its digital Twin, for the

specific use case of this project. This would cover the so-called "Information" layer provided by RAMI

4.0.

By using MQTT, OPC UA and REST-API technologies, the information is made available in a specific and

particular way in a common network (local or not). This would cover the so-called "Communication"

layer of RAMI 4.0

Then, the different elements are required to cover the "Integration" layer of RAMI 4.0. Bearing in mind

that in this layer the information is transmitted from the physical world to the digital or information

world, the additional device(s), if applicable, of each asset must be added and/or configured in the

26

implementation stage. This should be considered by the different partners that are part of the

CoRoSect project, taking into consideration the specific statements of the IEC 62453 [16] and IEC

61804 [17] standards.

2.3.3.6. Analytics to improve the decision-making process (Based on SoA)

Upon successful completion of the digitization process, a structure of information and services
is obtained that ends up supporting specific businesses by covering specific needs or requirements
according to the use case. But always, every digitization process ends up satisfying a real need, which
is actually the reason for carrying out such process.
On the other hand, the service orchestration process and data analytics play a fundamental role in the
decision-making process. Service orchestration must be based on an analytics-based logic Data
analytics must provide support based on facts (information), which may come from multiple sources,
to make decisions in real time. Under this concept, each asset, regardless of its type (Robot, MES, AGV,
Insect Box, etc.), can make concrete decisions in order to satisfy certain requirements/demands that
may come from different sources (Other assets, human, market, etc.).

For this reason, the service-oriented architectures intended to be used in this project, requires a

common language for the exchange of information (generally provided by the different interfaces and

gateways) to enable the orchestration process.

The aforementioned is related to the following project tasks/deliverables:

• Deliverable/Task 4.1 Adaptative Farm Process Modeling

• Deliverable/Task 4.2 Data Analytics to obtain prediction models

• Reference Deliverable/Task 4.3 Orchestration Engine Implementation

2.3.4. Guidelines - Structure of data and Compliance (HSEL)
2.3.4.1. Information structuring

For digitization of shop floor assets, AAS has been chosen as the digital twin component which

is a standard set by the RAMI 4.0 framework. The AAS addresses the information structure and the

formats compatible for integration of assets in the OT as well as IT layers.

For this reason, the previous sections have been dedicated to establishing the conceptual bases

necessary for the definition of the structure of the asset information with the AAS. Then in the

following sections, the strategy used for the implementation of AAS in a service-oriented structure

with multiple interfaces and connections will be discussed in detail.

 Within the elements available according to the reference document [3], the elements defined

in section 2.3.2.5 are used since they are sufficient to describe the information required for this

specific use case.

Then, because the project has different partners, who will be dedicated to the actual implementation

of the assets with the required interfaces for their subsequent orchestration, it is decided to generate

a spreadsheet from HSEL that facilitates the definition of the parameters that are required and that

must be available in the AAS.

Once the file for each of the assets has been generated, the members of the HSEL team will generate

the information that the AAS must contain using specific software which will be described later.

Depending on the type of implementation from the asset's point of view, the structured information

will be exported in well-defined formats (JSON and XML in this case) in accordance with the structure

defined in the reference document [3]. It must be highlighted that each partner, that makes use of

27

these files, respects the structure of the information provided in terms of the nomenclature used

according to the standards and definitions adopted from HSEL.

The information flow can be seen in figure 17 that will be displayed in section 3.3.2.

2.3.4.2. Formats used for communication

From the point of view of digitization, under the RAMI 4.0 framework and also based on the

information provided in the document [3], there is no specific methodology defined on how the

information that is being offered under this framework should be implemented.

As long as the semantics and syntax of the information provided is respected, each user can dispose

of the information. From the implementation point of view, this is the methodology that is most

convenient for the specific applications that are being carried out. As an example, a complete Sub-

Model of an AAS can be published as a topic on an MQTT broker. Thus, each subscriber accesses the

complete Sub-Model, having to process it in a specific stage to extract and finally dispose of the

information. Another case that can be cited is the use of information nodes of an OPC UA server that

is created from the information models supplied (previously generated with the tool that has been

used to generate the AAS). For example, OPC UA methods can be used to define the operational states

of each of the assets that are part of the implementation.

Therefore, it is recommended to use good practices regarding the implementation of

information models, as long as the structure and definition of the information that has been provided

by HSEL through the AAS is respected.

28

3. Integration and Interfacing approach
3.1. Introduction

The basis of implementation of CoRoSect for insect farms follows a certain standardization

methodology to integrate farms into a coherent, safe and scalable environments. According to the

OASIS RM SOA, the I4.0 gateway is the core of implementing a service-oriented architecture [4]. The

service interface and service behavior form the basis for this implementation. Based on the

requirements defined in sections 2.1 and 2.2, the desired interfaces needed to manage, orchestrate,

and store the data are designed and the implementation of services by the assets providers using the

service interface (AAS)is specified. The generic I4.0 service gateway is implemented using MQTT, OPC

UA or REST by the asset providers on their premises/cloud for publishing data to service consumers.

In addition, for a system to be coherent, there might be data that the asset needs in order to execute

certain actions. Therefore, it is required that the I4.0 gateway implements a client- subscriber to act

as service consumer in each of the asset gateways.

Though it is relevant and technically possible to have a client/subscriber implemented for each

server/publisher (service provider) it needs to have a connection but is cumbersome and limits the

expansion of the system. Also maintaining connections to all the service providers (assets) is

extraordinarily difficult and not recommended. Therefore, it is pertinent that a central broker is

brought into the picture. This central broker (IMS) will be connecting to all the service providers as a

service consumer for reading their data and sending a command to execute the functions through the

AAS (service interface). This AAS is implemented using OPC-UA Server / MQTT Publisher / REST API

Server developed by all tech providers (e.g., UM & CERTH for M-Robot, CERTH for Augmented Reality

glasses (Hololens), ATOS for Object Detector & Route Manager, AGVR for AGV, Robotnik for D-Robot,

OAMK for IC)

The IMS will also be providing a service (role of service provider) implemented using a REST API Server

supporting an NGSI interface. Using Smart Data Models as its modelling language for the tech

providers to only implement a single client/subscriber (role of service consumer). That is to send the

request for data from any particular service provider (asset) or send a request for initiating/invoking

a command on any of the chosen service provider (asset). This is detailed in D2.4 and D9.2.

This effectively means that the IMS is a pivotal point to which any asset, in the role of service

consumer, can ask for data or invoke a command on another asset that is connected to it. Likewise, it

is a central point to which all the assets are connected in the role of service providers and serve the

requests for data or execution of the command. In summary, no two assets maintain a connection to

each other but exchange information in various roles of service consumers or service providers

through the IMS. (Figure 12)

29

Figure 12 The different assets integrated with the IMS – Source HSEL

The IMS will be a FIWARE [12] Context Broker based integration framework to integrate the assets

into a coherent CoRoSect system and execute production recipes in a Service-Oriented Manner.

Thus, with the application of the AAS for defining the service interface and the Context Broker (IMS),

the attributes of an SoA based production system can be fulfilled. These attributes are described in

Table 1.

Table 1: Attributes of an SoA based Production System – Source HSEL

Attribute Description Technology that supports the

attainment of the attribute

Flexible The ability to react to changed requirements

or new subsystems

AAS & Context Broker (IMS)

Scalability No limitations through the size of an

automation system

AAS & Context Broker (IMS)

Modularity and

standardized interface

Replacing a system should not cause adaption

of depending on systems

AAS

Common information

model

A similar Information Model describing the

information of assets

AAS

Data Visibility Explicit marking of properties and operations

that are offered by the asset

AAS

Historic data access Provision of accessing the historical data

about the asset

Context Broker (IMS)

Inter-enterprise data

exchange

Providing facility to extract data within or

outside the system

Context Broker (IMS)

Privacy, integrity, and

security

Providing facility to extract data with proper

privacy and security

Context Broker (IMS

Service detection and

orchestration

Seamless integration of participants. If new

services are detected, these should be

configured and used automatically. Services

AAS & Context Broker (IMS)

30

need to be identifiable and orchestrated to

support the execution of business logic

Real-time

communication

The need to send and receive data in real-

time

Can be achieved by applying

the existing cycle-based field

bus communication for a few

isolated, critical control

functions or services that need

to be defined in such a way that

they are independent of real-

time constraints

Thus, based on the meaning of service, roles of service participants, service interface (AAS) & service

behavior & the Context Broker (IMS), it can be agreed that a common integration approach would

look like Figure 13

Figure 13 Integration Approach for Assets in CoRoSect – Source HSEL

3.2. Reference Implementation of I4.0 Service Gateway
From the asset provider the implementation of the Asset I4.0 Gateway for each asset that the

CoRoSect system consists of would result in Asset gateway containing a server/publisher and a

client/subscriber, as depicted in Figure 15. The service interface is basically a JSON file serialized from

the AAS package explorer software that will be used by the asset providers to publish the data as per

the schema using MQTT/REST API/OPC UA.

The reference implementation of asset I4.0 Gateway is shown in Figure 14

31

Figure 14 A Reference Implementation of Asset I4.0 Service Gateway – Source HSEL

Section 4.1 describes how to implement a server/ publisher of the I4.0 Gateway described above. The

reference implementations are based on OPC-UA, MQTT & REST API Server. The asset providers will

have the freedom to choose the protocol based on what can best support the business cases. Section

4.2 describes the implementation of a client/subscriber based on REST API Client. But it is a must that

all the assets implement both a) one server/publisher defining it service interface using AAS and b)

one client/subscriber for calling services defined in NGSI. This will help in making sure that I4.0 Service

Gateway is implemented for all the assets and all the assets are integrated into a single coherent

CoRoSect system in a RAMI 4.0 compliant SOA manner.

3.2.1. Implementation of servers/publisher's component of the I4.0 Service

Gateway
The OPC-UA Server is the basis of OPC-UA communication. It is a server software that implements the

OPC-UA communication stack and thus provides the standardized OPC-UA interfaces to the outside

world. There are standard services that OPC-UA Servers support e.g., Read, Query, Invoke, Write etc.

The way to implement an OPC-UA Server is described in Figure 15.

An OPC-UA Server Application is implemented using programming languages like c#, java, python, &

C. these server applications will have some internal functions and variables defined. These variables

and functions on one hand will have a connection to the asset controller using a property connection

like ROS, SQL, File Messaging System, Modbus, Profinet, etc. On the other hand, these variables and

functions will have a mapping to the properties and functions defined in OPC-UA Address Space. The

OPC-UA address spaces is a collection of nodes populated from the OPC-UA Information model file

defined using the specifications of the AAS. So, in summary, AAS Service Interface) converts to-> OPC-

UA Information model coverts to-> OPC-UA Address Space.

32

The OPC-UA Server API which is used in the OPC-UA Server Application is provided by the open-source

libraries [18] [19] & [20]. The API’s implement an OPC-A Communication Stack which is responsible

for managing for creating an endpoint for exposing the address space (service interface) to the IMS or

external OPC UA test client’s like UaExpert [21]. The communication stack will take care of handling

request messages that are coming from the IMS and giving them particular response ie. The value of

the properties or output data from the execution of functions/commands.

Figure 15 MQTT and OPCUA server implementation – Source HSEL

MQTT Publisher on the other hand is the basis of MQTT communication. It is software that implements

an MQTT communication stack that is used to Publish the data to a broker. It supports only one service

of publishing the data to the broker. The way to implement an MQTT Publisher is given in Figure 15.

3.2.2. Implementation of the client/subscriber component of the I4.0 Service

Gateway
The client/subscriber component of the I4.0 Service Gateway needs to be implemented using the REST

API Client. A REST API client will work on the request/reply pattern and will be used to implement the

service consumer role for the asset providers. With this client, the asset providers can request any

data or issue a request for invoking a command on other service providers (asset providers) using the

IMS. The necessary support for implementing the client will be provided by ATOS. But the client has

to be developed by the asset provider ex. UM, CERTH, Robotnik, AGVR etc.

33

A reference implementation of this REST API Client is shown in Figure 16.

Figure 16 REST API Server Application – Source HSEL

3.3. Interfacing Approach

3.3.1. Generic Schema for assets interfacing
The assets in the CoRoSect system are a combination of hardware and software. For each type

of asset the asset administration shell service interface is formulated by a set of Sub-Models and

attributes. These data and information in the Sub-Models and attributes are specific for certain assets

and depend also on the life cycle stage of the asset. In this implementation the assets are in their

Instance phase of the life cycle refers to the usage/maintenance stage. Hence, referring to the

literature of the “Details of AAS [3]” gives a clear perspective of what the Sub-Models should be and

what attributes must the Sub-Model hold. Each asset provider defines what information should the

Sub-Model publishes in its serialisation form and when the publishing should happen. In this project

the data that is necessary is published to the IMS via the service gateway, it’s also important to know

that not all assets of all shop floors are digitalised. As per the common understanding of the

Consortium and especially the asset providers, key functional and operational attributes are selected

after careful scrutinization and references from standard AAS implementation. The generic scheme of

34

contents of AAS are mapped in excel form (see Figure 17) and shown in the example illustrated in

Figure 22.

As mentioned, each asset has its own set of Sub-Models and corresponding attributes, the AAS is

defined by

1. Understanding the Asset

2. Knowledge of interaction of assets with other assets in an insect farm.

3. Data and functions required based on common understanding of interaction of assets.

4. Match the functions and properties with IEC CDD and fetch the semantic data

5. Fill the details from 3-4 in the AASX tool

6. Validating the final schema

7. Transform the data into required format (JSON, XML)

8. Validate the final format.

3.3.2. Information flow for interface generation
Figure 17 depicts the AASX information/definition flow. The AASX hence is the digital

representation of the functions and operations the asset is capable of producing and consuming.

Figure 17 Information flow for Interface creation – Source HSEL.

3.3.2.1. AAS deployment method

This section illustrates the AAS deployment processes in the edge layer, i.e., how to integrate the AASX

model into the OPC UA information model and MQTT and how to map the AAS model data with the

continuous runtime field data. The AAS deployment processes entail three steps, as shown in Figure

18:

Figure 18 Implementation steps for AAS deployment – Source HSEL based on [22]

35

In step 1, the AASX package explorer is used to model the field assets, their properties and hierarchical

relationships in an AASX file, which will also be saved as a JSON and XML files. Resulting from part 1

of the AAS specification, an AAS schema file (JSON format) that defines the elements for the AAS meta-

model is also prepared.

In step 2, the interface file is used by the asset I4.0 gateway server to update static and real time

values in the designated fields. The output of this step is an information metamodel containing context

information.

In step 3, common interface information model is used by the components in MES for different

functionalities such as data aggregation, data storage, process orchestration and decision making.

3.4. CoRoSect’s System Architecture
CoRoSect’s System Architecture [Deliverable 2.3] [Deliverable 2.4] was developed keeping in

mind the DoW objective which is to create a novel digitalised integrated business solution based on

RAMI 4.0. Based on the Industry 4.0 standard reference architecture model, the CoRoSect architecture

considers merging of Shop floor assets and infrastructures with IoT technologies. The architecture

development was modelled based on the requirements

In order for the system architecture to be compliable to Industry 4.0 reference architecture,

interoperability and flexibility of CPS and components is needed. One of the key principles is to choose

an architecture that covers the specific use-case requirements. In this scenario, it is required that the

assets at the shop-floor level (OT) should be able to share data and information among themselves

and also with the enterprise (IT) levels in an SoA way. The convergence of the OT and IT systems

demands a specific middleware-like entity that can fulfil the service-oriented architecture

requirement. In this regard, PERFoRM architecture [23] fits the CoRoSect infrastructure.

Figure 14 depicts the entities/components that are needed to realize the CoRoSect architecture. HSEL

recommended the specific technologies, methodologies, interfaces, data modelling, and data routing

(information flow mechanisms) that are required for process and service orchestrations.

The efficiency and flexibility can be improved by Implementing the I4.0 industrial automation

framework. This can help exposing the functionalities of the insect farm's assets and enabling effective

communication and integration of information. In an I4.0-compliant insect farm, the Manufacturing

Execution System (MES) would act as the central hub for collecting, organizing, and distributing data

from the shop floor while orchestrating the processes.

The MES is connected to Basyx [13], an open-source platform for industrial automation, which will

enable the communication with FIWARE [12], a cloud-based platform for building IoT applications.

FIWARE [12], in turn is integrated with NGSI, a standard for exchanging and representing data in IoT

systems.

A high-level abstraction of data flows combined with standard technologies and protocols to control

the farm process is detailed in Deliverable 2.4.

The architecture enables data flow from Assets to MES through a context broker, sometimes in

scenarios when real time control is required the assets interface communicates with the SFM directly.

Critical functions and controls need to be defined in such a way that the system is independent of real

time constraints to ensure safety of the assets and the humans as well.

36

3.5. Standard Protocols (MQTT, OPCUA) and interfaces (API's)
The DIN SPEC 91345 RAMI4.0 specifies MQTT, OPC UA and Webservices (Figure 19) as the

technologies/protocols that are compliant as they support service-oriented architecture [1].

Figure 19 RAMI 4.0 compliant Communication protocols – Source [3]

MQTT and OPC UA are the most widely used industrial communication protocols. Depending upon the

real-time communication constraints the protocols are chosen by the asset providers. In applications

where real-time is a constraint, OPC UA is best suited as control and manipulation of assets is critical

for the their safety and also the humans working with them (D-Cell, M-Cell/VI, Augmented Reality

glasses (Hololens) [#2 - CERTH]). MQTT on the other hand is typically used when we need data from

constrained devices such as sensors (I-CRATES, AGV, Object detection and Route Manager).

As shown in Figure 20, MQTT is divided into two parts: MQTT client and MQTT broker. In this

implementation the assets publish data to the MQTT broker (MQTT Explorer) as topics (Sub-Models)

and these topics contain the payload Sub-Models as JSON). The information is published by the client

when the value of the topic changes by following the report by exception mechanism. The JSON

payload is used as server interface by the MES (IMS), the context information from the asset is

received by the context broker.

Figure 20 MQTT structure diagram – Source based on [24]

OPC UA on the other hand is widely used industrial protocol as it supports information modelling

anddata transport over web services. The protocol is used by the cyber-physical world to connect to

any assets in the IT system. The service interface (AAS) is converted to XML. The OPC UA server

developed by asset provider is connected to the asset controller (PLC/ROS/SW) via a proprietary

protocol. The context information of the asset is then published to MES (IMS) via I4.0 service gateway.

In Figure 21 the general OPC UA Server - client architecture is shown

37

Figure 21 OPC UA Server - Client architecture - Source [25]

The simplest way for a Client and Server to exchange data is using the Read and Write OPC UA services,

which allow an OPC UA Client to read and write one or more attributes of Nodes, maintained into the

Address Space of the OPC UA Server; like most other services, the Read and Write services are

optimised for bulk read/write operations and not for reading/writing single values.

A different and more sophisticated way to access data is based on Subscriptions and Monitored Items;

this is the preferred method for clients needing cyclic updates of variable values. Subscriptions and

Monitored Items are put on the top of a Session level, which is an intermediate between an OPC UA

Client and an OPC UA Server created in the context of a Secure Channel [25].

4. Interfaces between Cyber physical systems and SFM

As detailed in Section 3.3.1, interfaces are required for the assets to interact with the MES

(IMS) using standard protocols. These interfaces are defined and provided to each shop floor

component providers. After exhaustive analysis of the functions and attributes associated to each

function, we have formulated an excel sheet, this sheet [Annex 7.1] outlays the contents of AAS, each

Shop floor component provider had proposed what information is needed by the SFM to orchestrate

the farm processes. For example: AGVPosition, MRobotStop, ICrateTemperaturebased on common

understanding, is a document containing relevant information about specific assets, their Sub-Models,

type of elements, datatypes and other semantics that were created for each asset.This document is

the reference for AAS implementation. Figure 22 illustrates an example of one asset document from

the shop floor.

38

Figure 22 Reference excel document for each asset – Example Image – Source Screenshot

There are several methods to implement an AAS, one such is specified by Platform Industry 4.0, a

package file format .AASX that can be generated using the tool described in [26], using the standard

functions and properties of each asset. Their respective Asset Administration Shells are created using

the Package explorer. Based on the open packaging conventions for representing an AAS [3], designed

to be in compliance with the AAS meta-model, the AASX file encapsulates the AAS information

including AAS model elements, properties, and additional files of any format in a structural way.

Within the scope of current developments in projects and few industries, AASX is a widely acceptable

data representation and exchange format for AASs.

The AASX package explorer tool [26] is a C#-based AAS editor that provides a series of functions to

manipulate the AAS information. It also implements several APIs including representational state

transfer (REST), MQTT, and open platform communications united architecture (OPC UA) for other

software applications to access the AAS information, while security mechanisms, e.g., token-based

authentication, are also embedded. Figure 23 shows the AASX development interface.

39

Figure 23 AASX Package Explorer UI – Example image – Source Screenshot

Also, based on the Reference implementation of I4.0 service gateway (3.2) the asset providers build

servers (OPC UA, MQTT) on their premises. Technically, these servers can be built on top of the assets

for functionality purposes or these servers can be built as an instance in cloud/ in local servers to

bridge the communication between the assets and shop floor manager. As this deliverable only

defines the interfaces, a brief overview of the interfaces is provided here. The detailed of integration

are in the scope of Deliverable 9.2.

Assets provide real time information and the IMS captures this data using interface APIs (Basyx API

[13]), the status/values of the asset and its actions are formatted as data according to the information

model of the corresponding device and this data is sent as JSON payload to the IMS. The infrastructure

that is built around each asset to collect, process and send this information is different for different

assets as these assets range from Hardware sensors to software MES, but they follow a common

methodology.

Methodology: All assets with AAS in the shop floor have their own I4.0 gateways running on either

MQTT/OPC UA protocols, the service interface (AAS) exposes information about the assets, Sub-

Models, Sub-Model elements to IMS via different entry points for different protocols and this entry

point will also be used to send commands to the assets. The asset information is provided Sub-Models

and the information inside Sub-Models will be used for dynamically updating the data to the IMS

synchronously or asynchronously. The relevant context information will be implemented in decision

making and orchestrating the farm processes by the MES.

The core of IMS implementation is the Basyx API [13], a context broker aggregates all the information

from different connectors receiving data from different shop floor assets. When the SFM invokes a

request based on DSS and the responses it receives from the assets, a request/query is sent via a API

40

GET method, a payload containing the request and InOut arguments is mapped against the AAS in the

NGSI and a corresponding command is sent to the asset controller via the I4.0 gateway.

As discussed, each asset has its own set of functionalities and properties, which are specifically defined

in the sections of each asset provider below with a brief description of asset functionalities.

A generic interface communication implementation scheme is shown in the Figure 24 below. For every

asset, specific interface implementation is detailed in Deliverable 9.2.

Figure 24 CoRoSect Interfaces implementation communication scheme.

4.1.1. Identified Assets
The assets listed in the following sections have been previously defined in the deliverable 2.3, section

4.4.2 Identification of Assets (In order to show which assets need to be digitized and to create their

interfaces).

4.1.2. Stacking/De-staking Robot (D-Robot) Interface data

The D-Robot’s main functionality is divided into two main procedures:

• De-stacking procedure: D-Robot picks/box crate from input pallet and places it in operation
table.

• Stacking procedure: D-Robot picks crate/box form operation table and places it in output
pallet.

The table summarizing the asset data is shown below:

Submodel Nameplate

Field Description datatype

ManufacturerName Legally valid designation of the natural or

judicial person which is directly responsible for

the design, production, packaging and labelling

of a product in respect to its being brought into

circulation

string

ManufacturerProductDesignation Short description of the product string

Country code Agreed upon symbol for unambiguous

identification of a country

string

41

Street Street name and house number string

Zip ZIP code of address string

CityTown Town or city of the company string

StateCounty State/county string

ManufacturerProductFamily 2nd level of a 3-level manufacturer specific
product hierarchy

string

YearOfConstruction Year as completion date of object string

SerialNumber Unique combination of numbers and letters
used to identify the device once it has been
manufactured

string

ClassificationSystem Classification System string

DateOfManufacture Date from which the production and / or
development process is completed or from
which a service is provided completely

string

ProductCountryOfOrigin Country in which the product is manufactured
(manufacturer country)

string

QrCode QrCode string

ProductIdentifier ProductIdentifier string

Submodel Technical data

Field description datatype

RobotMovementStatusConfigured To let service consumer

know about the movement

status that are configured

for the D-Robot

string

{0:"Moving", 1:"Stopped",

2:"EmergencyStopped"}

StatusConfigured To let service consumer
know about the status that
are configured for the D-
Robot

string

{0:"Off", 1:"On", 2:"Under

maintenance", 3:"Faulty",

4:"Out of service", 5:"Ready"}

TaskStatusConfigured To let service consumer

know about the task status

that are configured for the

D-Robot

string

{0:"Paused", 1:"Executing",

2:"Success", 3:"Failed"}

GeneralTasksConfigured To let service consumer
know about the general
tasks that this D-Robot can
perform and its associated
task id’s

string

{0:"move to x,y,z", 1: "Return

to home position", …}

SpecificTasksConfigured To let service consumer
know about the specific
tasks that this D-Robot can
perform and its associated
task id’s

string

{100:"D-Stack", 101: "Stack"}

42

Submodel AssetConditionMonitoring

Field description datatype

RobotMovementStatus Check D-Robot motion -> currently
moving, stopped or emergency
stopped

int (0-2)

Status Check D-Robot overall status int (0-5)

GripperObjectHeld Check gripper status -> object is
currently held

boolean

TaskStatus Check status of the current task int (0-3)

TaskID To know for which task id the task

status corresponds

int (0-… + 100-101)

DRobotCobotWorkspaceFree Check that the shared workspace
between D-robot and M-robot is
free

boolean

DRobotAGVSharedWorkspaceFree Check that the shared workspace

between D-robot and AGV is free

boolean

Submodel OperationalCapabilities

Field description Input variable datatype

ExecuteGeneralTask Make D-Robot execute a predefined task

int

DeStackCrate Make D-Robot execute de-stacking of a crate
into table

String ((x, y, z) crate

position in JSON format)

StackCrate Make D-Robot execute stacking of a crate into
pallet

String ((x, y, z) pallet

position in JSON format)

StopOperation Stop execution of current task -

ResumeOperation Continue task after stop (if possible) -

ReturnErrorStack Return exceptions trace -

EmergencyStop Execute emergency T1 stop -

InitializeCell Initializes the cell status before a new pallet of

crates enters in the cell

String ((x, y, z) cell

configuration in JSON

format)

4.1.3. Manipulation Robot including Visual Inspection (M-Robot/VI)
The M-Robot including the Visual Inspection Sensors is a core component in the CoRoSect Robotic

Cell. The M-Robot's main objective is

• Manipulation of insects (e.g., picking, placing, sorting).

43

• Feeding of insects (e.g., adding feed to insect crates)

• AI-based visual inspection and monitoring of insects (e.g., visual monitoring of growth)

• Material handling for manipulating the insects’ environments (e.g., adding/removing support

structures into/from crates). The M-Robot is designed to collaborate with human co-workers.

To fulfil its tasks the M-Robot is equipped with sensors and robust controllers to perform its

tasks in a safe way.

Based on these functionalities, the table below specifies the data associated to the asset that

can be exchanged for achieving the objectives.

Submodel Nameplate

Field description datatype

ManufacturerName Legally valid designation of the

natural or judicial person which is

directly responsible for the design,

production, packaging and labeling of

a product in respect to its being

brought into circulation

string

ManufacturerProductDesignation Short description of the product

(short text)

string

CountryCode

Agreed upon symbol for

unambiguous identification of a

country

string

Street Street name and house number string

Zip

ZIP code of address

string

CityTown

Town or city of the company

string

StateCounty State/country

string

ManufacturerProductFamily

2nd level of a 3 level manufacturer

specific product hierarchy

string

YearOfConstruction Year as completion date of object string

SerialNumber Unique combination of numbers and

letters used to identify the device

once it has been manufactured

string

ClassificationSystem Classification System string

DateOfManufacture Date from which the production and

/ or development process is

completed or from which a service is

provided completely

string

44

ProductCountryOfOrigin Country in which the product is

manufactured (manufacturer

country)

string

QrCode QrCode string

ProductIdentifier ProductIdentifier string

Submodel TechnicalData

Field description datatype

MRobotTaskConfigured To let service consumer know

about the tasks that this M-Robot

can perform and its associated task

ids

string
[{1: "Return to home

position", 2:"Replace

sensors", 3: "Perform quality

management", 4: "Fill

crate", 5: "Empty crate", 6:

"Replace food and drink", 7:

"Push crate", 8:"Add new

beetles", 9:"Add wet feed",

10:"Pick up dead flies and

place them into container",

11:"Place oviposition boards

with hatched eggs into

container", 12:"Place

oviposition boards with fresh

eggs into container",

13:"Install clean oviposition

boards", 14:"Position the

oviposition boards with fresh

eggs into maturation

racks"}]

MRobotMovementStatusConfigured string
[{0:"Moving", 1:"Stopped",
2:"EmergencyStopped"}]

VIConfiguredInspectionType To let service consumer know

about the configured inspection

type for the VI system

string

VIConfiguredFarmType To let service consumer know

about the configured farm type for

the VI system

string

VIConfiguredDOL to let service consumer know about

the configured DOL type for the VI

system

string

StatusConfigured

To let service consumer know

about the status that are

configured for the VI system

string

TaskStatusConfigured To let service consumer know

about the task status

string

Submodel AssetConditionMonitoring

Field description datatype

45

MRobotMovementStatus To know if the robot is currently

moving, stopped or emergency

stopped

int

MRobotStatus Telling about the overall status of the

robot

int

MRobotObjectHeld Check whether an object is currently

held

boolean

MRobotTaskStatus status of the given task to the robot Int

MRobotTaskID To know for which task id the task

status corresponds

int

VITaskStatus status of the given task to the VI int

VITaskID To know for which task id the task

status corresponds

int

VIStatus Telling about the overall status of the

VI system

int

CobotDRobotWorkspaceFree To tell that the shared workspace

between M-robot & D-Robot is free

boolean

Submodel OperationalData

Field description datatype

VIResults Sends all the result of visual inspection with

order id as part of result

string

Submodel OperationalCapabilities

Field description datatype

MRobotExecuteTask To make MRobot execute a predefined

task

int

MRobotStop Stop execution of current tasks/motions boolean

MRobotResume Continue task after stop (if possible) boolean

MRobotReturnErrorStack Return exceptions trace string

MRobotEmergencyStop Emergency T1 stop boolean

VIStart MES requests vision system to start visual

inspection of a crate

Int / int / string/ int /

datetime

VIStop Immediately stop all currently running

tasks

46

VIReturnErrorStack Return exceptions trace

VIHistData to return the recorded historical analysis

data

String / int / datetime /

datetime / int

4.1.4. Intelligent Crates (I-Crates)
I-Crates contain embedded environmental sensors and a processing and control node which together

form so called Intelligent Integrated Sensors. The main functionality of I-Crate is to send the measured

parameters inside the I-Crate to the IMS.

Information sent from the I-Crates to the shop floor manager contains the following elements:

Submodel OperationalData

Field description datatype

TemperatureMeasure Temperature of the sensor in celsius float

TemperatureTimestamp Timestamp of temperature in GMT string

HumidityMeasure Humidity from the sensor in percentage float

HumidityTimestamp Timestamp of humidity in GMT string

CO2Measure CO2 level from sensor in ppm float

CO2Timestamp Timestamp of CO2 in GMT string

MoistureMeasure Moisture level from sensor in percentage float

MoistureMeasureTimeStamp Timestamp of Moisture in GMT string

NH3Measure Ammonium level from sensor in ppm float

NH3Timestamp Timestamp of NH3 in GMT string

PHMeasure pH level from sensor as a number float

PHTimestamp Timestamp of pH in GMT string

I-CratesLocation Geolocation of I-Crates string

Submodel BillOfMaterials

Field description datatype

TemperatureSensorSensorIdentifiers Unique identifier (MAC as default)

of the temperature-sensor. If the I-

CRATES configuration does not

include this sensor, the description

is “none”

string

HumiditySensorSensorIdentifiers Unique identifier (MAC as default)

of the humidity-sensor. If the I-

CRATES configuration does not

include this sensor, the description

is “none”

string

CO2SensorSensorIdentifiers Unique identifier (MAC as default)

of the CO2-sensor. If the I-CRATES

string

47

configuration does not include this

sensor, the description is “none”

NH3SensorSensorIdentifiers Unique identifier (MAC as default)

of the NH3-sensor. If the I-CRATES

configuration does not include this

sensor, the description is “none”

string

PHSensorSensorIdentifiers Unique identifier (MAC as default)

of the ph-sensor. If the I-CRATES

configuration does not include this

sensor, the description is “none”

string

MoistureSensorSensorIdentifiers Unique identifier (MAC as default)

of the Moisture sensor. If the I-

CRATES configuration does not

include this data, the description is

“none”

string (long
enough...)

4.1.5. Automated Guided Vehicle (AGV)
The Automated Guided Vehicle (AGV) is responsible for transporting the crates from and to the
different robot cells on a robust and safe way.

The AGV communicates with the route manager its movement co-ordinates. The table below shows
the data of the AGV:

Submodel OperationaCapability

Field description datatype

StartPause Activates the pause mode. -

StopPause Deactivates the pause mode. -

StartCharging Activates the charging process. -

StopCharging

Deactivates the charging process to send a new

order

-

InitPosition

Resets (overrides) the pose of the AGV with the

given parameters.

Array of Float and
string

StateRequest Requests the AGV to send a new state report -

LogReport

Request the AGV to generate and store a log

report.

string

Pick Request the AGV to pick a load
Array of Float and
string

Drop Request the AGV to drop a load
Array of Float and
string

DetectObject

AGV detects object (e.g. load, charging spot, free

parking position).

string

48

FinePositioning

On a node, AGV will position exactly on a

target

string

WaitForTrigger

AGV has to wait for a trigger on the AGV (e.g.

button press, manual loading).

string

CancelOrder AGV stops as soon as possible. string

Submodel OperationalData

Field description datatype

OrderId

Unique order identification of the current order or

the previous finished order. The orderId is kept

until a new order is received. string

OrderUpdateId

Order Update Identification to identify that an

order update has been accepted by the AGV. int

ZoneSetId

Unique ID of the zone set that the AGV currently

uses for path planning. Must be the same as the

one used in the order, otherwise the AGV has to

reject the order. string

LastNodeId

nodeID of last reached node or, if AGV is currently

on a node, current node string

LastNodeSequenceId

sequenceId of the last reached node or, if the AGV

is currently on a node, sequenceId of current node int

NodeStates

Array of nodeState-Objects that need to be

traversed for fulfilling the order array

NodeId Unique node identification string

NodeSequenceId

sequenceId to discern multiple nodes with same

nodeId. int

NodeDescription Additional information on the node string

NodePosition

Node position. The object is defined in ORDER

topic

Optional: master control has this information. Can

be sent additionally, e. g. for debugging purposes. JSON-Object

X

X-position on the map in reference to the map

coordinate system. Precision is up to the specific

implementation float64

Y

Y-position on the map in reference to the map

coordinate system. Precision is up to the specific

implementation float64

Theta

Orientation of the AGV on the node. Optional:

vehicle can plan the path by itself. If defined, the

AGV has to assume the theta angle on this node. If

previous edge disallows rotation, the AGV must

rotate on the node. If following edge has a

differing orientation defined but disallows

rotation, the AGV is to rotate on the node to the

edges desired rotation before entering the edge float64

49

AllowedDeviationXY

Orientation of the AGV on the node. Optional:

vehicle can plan the path by itself. If defined, the

AGV has to assume the theta angle on this node. If

previous edge disallows rotation, the AGV must

rotate on the node. If following edge has a

differing orientation defined but disallows

rotation, the AGV is to rotate on the node to the

edges desired rotation before entering the edge float64

AllowedDeviationTheta

Indicates how big the deviation of theta angle can

be. The lowest acceptable angle is theta -

allowedDevaitionTheta and the highest

acceptable angle is theta + allowedDeviationTheta float64

Nodereleased

Indicates if this node approached or approaching.

“true” indicates that the node is part of the base.

“false” indicates that the node is part of the

horizon. bool

EdgeStates

Array of edgeState-Objects that need to be

traversed for fulfilling the order array

EdgeId Unique edge identification string

EdgesequenceId

sequenceId to differentiate between multiple

edges with the same edgeId int

EdgeDescription Additional information on the edge string

Edgereleased

Indicates if this edge is processed or processing.

“true” indicates that the edge is part of the base.

“false” indicates that the edge is part of the

horizon bool

Trajectory Trajectory of the path JSON-Object

Degree

Defines the number of control points that

influence any given point on the curve. Increasing

the degree increases continuity. float64

KnotVector

Sequence of parameter values that determines

where and how the control points affect the

NURBS curve. knotVector has size of number of

control points + degree + 1. array

ControlPoints

List of JSON controlPoint objects defining the

control points of the NURBS, which includes the

beginning and end point array

AgvPosition Current position of the AGV on the map. JSON-object

PositionInitialized

“false”: position is not initialized

“true”: position is initialized bool

LocalizationScore

Describes the quality of the localization and

therefore, can be used

e. g. by SLAM AGVs to describe how accurate the

current position information is. float64

DeviationRange

Value for the deviation range of the position in

meters. float64

50

Optional for vehicles that cannot estimate their

deviation e.g. grid-based localization

Only for logging and visualization purposes.

MapId

Unique identification of the map in which the

position is referenced. Each map has the same

origin of coordinates. When an AGV uses an

elevator, e.g., leading from a departure floor to a

target floor, it will disappear off the map of the

departure floor and spawn in the related lift node

on the map of the target

floor string

MapDesc Additional information on the map. string

Velocity The AGVs velocity in vehicle coordinates JSON-Object

Vx The AGVs velocity in its x direction float64

Vy The AGVs velocity in its y direction float64

Omega The AGVs turning speed around its z axis float64

Loads Loads that are currently handled by the AGV. array

LoadId Unique identification number of the load string

LoadType Type of load string

LoadPosition

Indicates which load handling/carrying unit of the

AGV is used, string

BoundingBoxReference

Point of reference for the location of the bounding

box. The point of reference is

always the center of the bounding box’s bottom

surface (at height = 0) and is

described in coordinates of the AGV’s coordinate

system. JSON-Object

LoadDimensions Dimensions of the load’s bounding box in meters. JSON-Object

Length Absolute length of the load’s bounding box. float64

Width Absolute width of the load’s bounding box. float64

Height Absolute height of the load’s bounding box. float64

Weight Absolute weight of the load measured in KG int

NewBaseRequest

“true”: AGV is almost at the end of the base and

will reduce speed if no new base is transmitted.

Trigger for master control to send a new base.

“false”: no base update required. bool

DistanceSinceLastNode

Used by line guided vehicles to indicate the

distance it has been driving past int

ActionStates

Contains a list of the current actions and the

actions which are yet to be finished. This may

include actions from previous nodes that are still

in progress. When an action is completed, an

updated state message is published with

actionStatus set to finished and if applicable with array

51

the corresponding resultDescription. The action

state is kept until a new order is received

Actionid - string

ActionType actionType of the action string

ActionDescription Additional information on the current action string

ActionStatus See Action sheet for process in each action int

ResultDescription

Description of the result if necessary e.g., the

result of a RFID-read, BarcodeScanner, Measured

Weight string

Submodel AssetConditionMonitoring

Field description datatype

Status Telling about the overall status of the agv int

ConnectionState

Connection status of AGV for other assets,

managed by AGV for ONLINE, OFFLINE,

 Broker can set the state to CONNECTIONBROKEN

when connection is lost int

BatteryState Contains all battery-related information. JSON-Object

BatteryCharge

State of Charge:

if AGV only provides values for good or bad battery

levels, these will be indicated float64

BatteryVoltage BatteryVoltage float64

BatteryHealth State of health int8

Charging

“true”: charging in progress

“false”: AGV is currently not charging bool

Reach Estimated reach with current State of Charge int

OperatingMode Current Mode of the vehicle int

Errors

Array of error-objects. All active errors of the AGV

should be in the list.

An empty array indicates that the AGV has no

active errors. array

ErrorType Type/Name of error string

ErrorReferences

Array of references to identify the source of the

error (e. g. headerId, orderId,

actionId, … and its values) array

Driving

“true”: indicates that the AGV is driving and/or

rotating. Other movements of the AGV (e.g., lift

movements) are not included here.

“false”: indicates that the AGV is neither driving

nor rotating bool

Paused

True: AGV is currently in a paused state, either

because of the push of a physical button on the

AGV or because of an instantAction. The AGV can bool

52

resume the order.

False: The AGV is currently not in a paused state.

SafetyState Contains all safety-related information array

Estop

Enum {autoAck, manual, remote, none}

Acknowledge-Type of eStop:

autoAck: auto-acknowledgeable e-stop is

activated e.g., by bumper or protective field

manual: e-stop has to be acknowledged manually

at the vehicle

remote: facility e-stop has to be acknowledged

remotely

none: no e-stop activated int

FieldViolation

Protective field violation.

“true”: field is violated

“false”: field is not violated bool

4.1.6. Augmented Reality glasses (Hololens)
Human Robot collaboration environment safety is one of the primary objectives and hence AR can be

used as one of the tools to improve safety by providing visual cues and real-time information and

feedback about robot actions.

Microsoft’s HoloLens 2 is a see-through-based augmented reality mobile device that contains various

sensors and is an essential component regarding the situation awareness of the user, during human-

robot collaboration schemes.

The HoloLens 2 AAS holds information on the HoloLens's 2 capabilities, functionalities and properties.

The table below shows the data associated with the Hololens 2:

Submodel NamePlate

Field description datatype

ManufacturerName Circulation string

ManufacturerProductDesignation Short description of the product

(short text)

string

CountryCode

Agreed upon symbol for

unambiguous identification of a

country

string

Street Street name and house number string

Zip

ZIP code of address

string

CityTown

Town or city of the company

string

StateCounty State/country

string

53

ManufacturerProductFamily

2nd level of a 3 level manufacturer

specific product hierarchy

string

YearOfConstruction Year as completion date of object string

SerialNumber Unique combination of numbers and

letters used to identify the device

once it has been manufactured

string

ClassificationSystem Classification System string

DateOfManufacture Date from which the production and /

or development process is completed

or from which a service is provided

completely

string

ProductCountryOfOrigin Country in which the product is

manufactured (manufacturer

country)

string

QrCode QrCode string

ProductIdentifier ProductIdentifier string

Submodel TechnicalData
Field description datatype

ConfiguredAssets Contains a list of configured assets in

HoloLens2

string

StatusConfiguration To let service consumer know about the

status that are configured for the HoloLens

string

MessagesConfiguration

To let service consumer know about the

status that are configured for the HoloLens

string

Submodel AssetConditionMonitoring

Field description datatype

Status Telling about the overall status of the

HoloLens

int

DisplayStopped The function is used by any service consumer

to display any kind of message on HoloLens

boolean

Submodel OperationalCapabilities

Field description datatype

DisplayMessage The function is used by any service consumer

to display any kind of message on HoloLens

MessageID / AssetID

54

DisplayTrajectory The function is used by any service consumer

to display the trajectory it has planned to be

displayed on the HoloLens

Trajectory / AssetID

StopDisplayMessage The function is used by any service consumer

to display any kind of message on HoloLens

AssetID

StopDisplayTrajectory The function is used by any service consumer

to display any kind of message on HoloLens

AssetID

ReturnsStackError Return exceptions trace

4.1.7. Route Manager
Route manager deals with the creation and tracking of the routes of the robots. Route Manager is a
pure software module.

Route Manager communicates with three modules:

• Shoop Floor Manager

• AGV

• Object Detector

Submodel OperationalCapability

Field description datatype

NewRoute to request the Route Manager for new route string

CancelRoute to request the Route Manager for cancelling the

route request

String
string

StartRoute request to start a named route

Submodel OperationalData

Field description datatype

MapPetitions Sends the current elements in the map string

RouteStatus Status marking when a route has finished string

Submodel AssetConditionMonitoring

Field description datatype

Status

Telling about the overall status of the route

manager int

ErrorMessage
Telling about the error message that has

happened in route manager string

InformationSourceforStatus
Telling about the information source for status

string

TimeofStatusChange Telling about the time of status change datetime

55

4.1.8. Object detector
Obstacles’ detector deals with the detection of static or dynamic obstacles in the shop floor. A
complete description of the Obstacles Detector can be found in Deliverable 6.7 Safety concept for
robotic systems (planning)(M12) and especially in 6.8 Safety concept for robotic systems (creation) due
to M24.

Obstacles’ Detector is a pure software component associated with one or many fixed IP cameras.

Table below shows the data of the Obstacle detector:
Submodel OperationalData

Field description datatype

InformationSource Source of information of detection string

TimeofDetection Time of Detection datetime

DetectionUnqiueId Unique Message Id associated to the detection string

TypeofObstacle Real Asset Type of the object detected string

DetectedObjectPosition Latitude and longitude of the detected object string

PredictedTrajectory

Latitude and longitude of the detected object in 0

sec, 1 sec and 2 sec string

DetectionMessage

Some extra information with regards to detected

object
string

56

5. Data Security
5.1. Data Consistency
The role of HSEL is also to ensure the correctness of the data and the structure of data the shop floor

asset controllers send to the IMS and vice versa, a common MQTT broker and a OPC UA (Ua Expert)

client is implemented where all assets can send their information to. As semantics and syntax play a

key role in implementing AASs, the information published and subscribed by the assets need to be

compliant as per ZVEI recommendations published in [3]. In an Industry 4.0 environment where

multiple systems are involved and interactions between systems generate high volumes of data,

sensitive information of the assets need to be protected from unauthorised accesses. The concept of

security demands Confidentiality, Integrity and Availability of data (CIA Triad), in this respect all the

context information exchanged between IMS and assets at shop floor is secured and encrypted.

Details of CoRoSect data security are explained in Deliverable2.4 (Advanced System Architecture).

5.2. Total Integration
CoRoSect’s interfaces are defined based on RAMI4.0 specifications, independent of shop floor

protocols, a generic metamodel of information of each asset is defined and the metainformation

model is deployed by all technology providers in their respective I4.0 gateways implemented at shop

floor level. During the integration phase all the metamodels of information of all assets will be

integrated for achieving different functionalities that collectively achieve the digitalisation of Insect

farms. The SFM orchestrates the farm processes using the developed interfaces

57

6. Conclusion

According to what was presented in the introduction, this deliverable proposes the integration plan

and concretely define the interfaces for the digitization of the assets in order to cover the

requirements for the orchestration of services required for the particular use case.

Initially, the requirements for Interfaces and Integration were defined to create a compatible

ecosystem, in which each asset can share functionalities that allow the orchestration from the MES to

the Shop Floor or vice versa. Due to the multiplicity of Assets and in order to achieve a complete

integration, different considerations had to be taken into account. On the one hand, there are

different communication protocols (OPC UA, MQTT) and on the other hand, an integration with

possible applications that may exist has to be carried out to ensure a coherent flow between the

different hierarchical levels. In addition, part of the basis for the generation of this deliverable have

been taken from Deliverable 2.3, since it laids the foundations on which the integration plan of the

CoRoSect devices and systems was based.

In turn, the information of each relevant Asset has been structured and published under different

points of view (different formats), through its AAS. For this reason, concrete information had to be

generated according to the intended functions of each asset according to the use case. This was done

in a standardized, specific way and using specific tools and resources.

With this, it is clear that in this deliverable it was necessary to focus on the different interfaces

required to achieve the integration of the different assets in a coherent and compatible ecosystem

with the guidelines of Industry 4.0 through the proposed architecture model RAMI 4.0.

The deliverable defines the methodology and approach plan to integrate the assets of CoRoSect shop

floors to achieve interoperability between OT and IT levels. Firstly, the deliverable focused on detailing

the steps of developing the I4.0 gateways that each technology provider will implement and the

interfaces required by I4.0 gateways. These interfaces are needed at the OT level for exchanging

information to the MES for process orchestration. And finally, the deliverable specifies the method of

implementing these interfaces for smart mechatronics and IoT based devices using I4.0 compliant

communication technologies and frameworks. The project follows a service-oriented architecture

based on the OASIS RM SOA [4] and the I4.0 gateway and uses the Asset Administration Shell (AAS) to

connect assets to the system. A FIWARE [12] context broker (Figure 13) was used to manage the

interactions between the assets, and provides a service using a REST API server and NGSI interface.

This allows for a coherent, scalable, and safe environment for insect farming, and automates repetitive

and physically demanding tasks.

The interfaces will be developed using open-source technologies (FIWARE [12], Basyx [13], AASX

Package Explorer [26]) according to the proposal of this deliverable. These are developed based on a

reference schema resulting from several standard implementation references. On the other hand, a

common interface had to be provided for asset-related data loading. For this purpose, a preformatted

excel spreadsheet was provided to facilitate the loading of information and thus be able to correctly

generate the different assets administration shells. Then, using specific tools [26], it was possible to

generate the compatible data schemas according to the ones proposed by the I4.0 platform in JSON

and XML.

Finally, the outcomes of this deliverable were: the interfaces, the specific guidelines for implementing

these interfaces and the proposed technologies will be used by technical work packages (WP2, WP4,

WP5, WP6, WP7, WP8 and WP9) to enable the assets to work in a coherent manner. Based on these

58

implementations the integration of all CoRoSect system components (OT and IT) will be detailed in

Deliverable 9.2 (Integrated CoRoSect Platform).

59

7. Annex
7.1. Spreadsheets used to standardize the information load of the

Asset Administration Shell
Links to the different folders.

• Stacking/De-staking Robot (D-Robot):

o Link: AAS_DRobot.xlsx

• Manipulation Robot including Visual Inspection (M-Robot/VI)

o Link: AAS_MRobot_VI.xlsx

• Intelligent Crates (I-Crates)

o Link: AASIC.xlsx

• Automated Guided Vehicle (AGV)

o Link: AAS AGV.xlsx

• CoRoSect Partner N°2 CERTH Augmented Reality glasses (Hololens)

o Link: AAS_Holoens.xlsx

• Route Manager

o Link: AAS Route Manager.xlsx

• Object detector

o Link: AAS ObjectDectector.xlsx

Note for external reviewers: Kindly send an email to CoRoSect project leader, Mr. Rico Möckel

requesting the AAS Excel files.

Email: rico.mockel@maastrichtuniversity.nl

https://maastrichtuniversity.sharepoint.com/:x:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS%20for%20D-Robot/AAS_DRobot.xlsx?d=we633ffa3d3bd456ba0292a3976c412bc&csf=1&web=1&e=Ww5gUl
https://maastrichtuniversity.sharepoint.com/:x:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS%20for%20M-Robot_VI/AAS_MRobot_VI.xlsx?d=w0810049d04e0470a9e5230936bbbe53d&csf=1&web=1&e=AV50pz
https://maastrichtuniversity.sharepoint.com/:x:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS%20for%20IC/AASIC.xlsx?d=w87e28aa8973b4e4e891743c3109508cb&csf=1&web=1&e=r436XN
https://maastrichtuniversity.sharepoint.com/:x:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS%20for%20AGV/AAS%20AGV.xlsx?d=we591b3c04065451f935ceea168eedabd&csf=1&web=1&e=YMeK1E
https://maastrichtuniversity.sharepoint.com/:x:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS_HoloLens/AAS_Holoens.xlsx?d=wb2a6d7b37bcb44deabe98bef9a308d9c&csf=1&web=1&e=d8WYLK
https://maastrichtuniversity.sharepoint.com/:x:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS%20for%20Route%20Manager/AAS%20Route%20Manager.xlsx?d=w49f466b92d6d4c898337c3b666c877e8&csf=1&web=1&e=yctPAT
https://maastrichtuniversity.sharepoint.com/:x:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS%20Object%20detector/AAS%20ObjectDectector.xlsx?d=w8749d7f833084cc3817bdb42a7a21fcd&csf=1&web=1&e=ch5PhV

60

7.2. Standardized output formats of the Asset Administration Shell
• Stacking/De-staking Robot (D-Robot):

o Link: AAS_DRobot.xml

• Manipulation Robot including Visual Inspection (M-Robot/VI)

o Link: AAS_MRobot_VI.xml

• Intelligent Crates (I-Crates)

o Link: ICrate JSON

• Automated Guided Vehicle (AGV)

o Link: AGV JSON

• CoRoSect Partner N°2 CERTH Augmented Reality glasses (Hololens)

o Link: AASHololens.xml

• Route Manager

o Link: RM JSON_files

• Object detector

o Link: Object Detector JSON_files

https://maastrichtuniversity.sharepoint.com/:u:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS%20for%20D-Robot/AAS_DRobot.xml?csf=1&web=1&e=97KHq0
https://maastrichtuniversity.sharepoint.com/:u:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS%20for%20M-Robot_VI/AAS_MRobot_VI.xml?csf=1&web=1&e=TK5PAx
https://maastrichtuniversity.sharepoint.com/:f:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS%20for%20IC/ICrate%20JSON?csf=1&web=1&e=29bd9T
https://maastrichtuniversity.sharepoint.com/:f:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS%20for%20AGV/AGV%20JSON?csf=1&web=1&e=hzR6EW
https://maastrichtuniversity.sharepoint.com/:u:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS_HoloLens/AASHololens.xml?csf=1&web=1&e=ZA6y7V
https://maastrichtuniversity.sharepoint.com/:f:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS%20for%20Route%20Manager/RM%20JSON_files?csf=1&web=1&e=ZJ2X6d
https://maastrichtuniversity.sharepoint.com/:f:/r/sites/FSE-CoRoSect/Shared%20Documents/WP09%20Secure%20platform%20integration/AAS%20Object%20detector/Object%20Detector%20JSON_files?csf=1&web=1&e=kF5xbv

61

References

[1] DIN SPEC 91345. Reference Architecture Model Industrie 4.0 (RAMI4.0), Released: April 2016

[2] DIN EN 62890. Life-cycle-management for and products used in industrial-process measurement,

control and automation, Released: May 2017.

[3] Industrie 4.0 Plattform, Industrial Digital Twin Association, and ZVEI. Details of the asset

administration shell. Part 1 - The exchange of information between partners in the value chain of

Industrie 4.0 (Version 3.0RC02). URL: https://www.plattform-

i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_

V3.html. Last Access: 01.12.2022

[4] OASIS. Reference architecture foundation for service-oriented architecture version 1.0. URL:

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html. Last Access: 01.12.2022

[5] Colombo, Armando Walter. Lectures in Digitalization of Industrial Cyber Physical Systems. Master

in industrial informatics Course, Hochschule Emden Leer (Germany), 2022.

[6] ANSI / ISA 95. Enterprise - Control System Integration.

[7] ANSI / ISA 88. Batch Control.

[8] DIN EN / IEC 62264. Life-cycle management for systems and products used in industrial-process

measurement, control and automation. Released: April 2017.

[9] DIN EN / IEC 61512. Batch control systems. Released: August 1997.

[10] ZWEI. Ergebnispapier “Struktur der Verwaltungsschale - Fortentwicklung des Referenzmodells für

die Industrie 4.0-Komponente”. URL: https://www.zvei.org/presse-medien/publikationen/struktur-

der-verwaltungsschale/. Last Access: 05.12.2022

[11] ISO/TS 29002-5. Industrial automation systems and integration — Exchange of characteristic data

— Part 5: Identification scheme. Released: February 2009.

[12] FIWARE Smart Solution, Release 8.3.0. URL: https://github.com/FIWARE/catalogue

[13] Eclispe Basyx Foundation – Middleware for Industry 4.0 https://basyx.CoRoSect.ari-

aidata.eu/docs

[14] IEC 61511. Functional safety - Safety instrumented systems for the process industry sector.

[15] IEC 62061. Safety of machinery - Functional safety of safety-related control systems.

[16] IEC 62453: Field device tool (FDT) interface specification

[17] IEC 61804. Devices and intergration in enterprise systems - Function blocks (FB) for process

control and electronic device description language (EDDL)

[18] Open source implementation of OPC UA. URL: https://github.com/OPCFoundation/UA-

.NETStandard

[19] Pure Python OPC-UA Client and Server. URL: https://github.com/FreeOpcUa/python-opcua

https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
https://www.zvei.org/presse-medien/publikationen/struktur-der-verwaltungsschale/
https://www.zvei.org/presse-medien/publikationen/struktur-der-verwaltungsschale/
https://basyx.corosect.ari-aidata.eu/docs
https://basyx.corosect.ari-aidata.eu/docs
https://github.com/OPCFoundation/UA-.NETStandard
https://github.com/OPCFoundation/UA-.NETStandard
https://github.com/FreeOpcUa/python-opcua

62

[20] OPC Unified Architecture.NET Standard. URL: https://github.com/OPCFoundation/UA-

.NETStandard

[21] UaExpert A full featured OPC UA client. URL: https://www.unified-

automation.com/products/development-tools/uaexpert.html

[22] X. Ye, S. H. Hong, W. S. Song, Y. C. Kim and X. Zhang, "An Industry 4.0 Asset Administration Shell-

Enabled Digital Solution for Robot-Based Manufacturing Systems," in IEEE Access, vol. 9, pp. 154448-

154459, 2021, DoI: 10.1109/ACCESS.2021.3128580.

[23] Angione, Giacomo & Barbosa, José & Gosewehr, Frederik & Leitão, Paulo & Massa, Daniele &

Matos, João & Peres, Ricardo & Rocha, Andre & Wermann, Jeffrey. (2017). Integration and

Deployment of a Distributed and Pluggable Industrial Architecture for the PERFoRM Project. Procedia

Manufacturing. 11. 896-904. 10.1016/j.promfg.2017.07.193.

[24] Zuoling Niu 2021 J. Phys. ” Research and Implementation of Internet of Things Communication

System Based on MQTT Protocol” Conf. Ser. 2023 012019

[25] Salvatore Cavalieri, Ferdinando Chiacchio, “Analysis of OPC UA performances,” Computer

Standards & Interfaces, vol. 36, no. 1, pp. 165-177, 2013.

[26] AASX Package Explorer tool. URL: https://github.com/admin-shell-io/aasx-package-explorer

https://github.com/OPCFoundation/UA-.NETStandard
https://github.com/OPCFoundation/UA-.NETStandard
https://www.unified-automation.com/products/development-tools/uaexpert.html
https://www.unified-automation.com/products/development-tools/uaexpert.html
https://github.com/admin-shell-io/aasx-package-explorer

63

