

D6.8 - Safety concept for robotic systems (creation)

corosect.eu

Ref. Ares(2023)860935 - 06/02/2023

1

Funding Scheme: Innovation Action (IA) ● Topic: H2020-ICT-46-2020

Start date of project: 01 January, 2021 ● Duration: 36 months

© CoRoSect Consortium, 2021.

Author(s)/Organisation(s) Jose-Ramon Martinez-Salio (Atos)

Contributor(s)

Work Package WP6

Delivery Date (DoA) 31/12/2022

Actual Delivery Date 06/02/2023

Abstract: Documentation of planned CoRoSect safety concept for robotic systems in

insect farms.

Document Revision History

Date Version Author/Contributor/ Reviewer Summary of main changes

29/09/2022 0.1 Jose-Ramon Martinez First working version

01/11/2022 0.2 Jose-Ramon Martinez Second version

08/11/2022 0.3 Miquel Mila Prat Third version

22/11/2022 0.4 Jose-Ramon Martinez Fourth version

05/12/2022 0.5 Jose-Ramon Martinez Final version for peer review

19/12/2022 0.6 Jose-Ramon Martinez Final version

25/1/2023 0.7 Jose-Ramon Martinez Final additions after peer review

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the EC Services)

RE
Restricted to a group specified by the consortium (including the EC

Services)

CO Confidential, only for members of the consortium (including the EC)

2

Reproduction is authorised provided the source is acknowledged.

CoRoSect Consortium

Participant
Number

Participant organisation name
Short
name

Country

1
UNIVERSITEIT MAASTRICHT

https://www.maastrichtuniversity.nl/
UM NL

2
ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS

https://www.certh.gr/
CERTH GR

3
HOCHSCHULE EMDEN/LEER

https://www.hs-emden-leer.de/en/
HSEL GER

4
LUONNONVARAKESKUS

https://www.luke.fi/
LUKE FIN

5
OULUN AMMATTIKORKEAKOULU OY - OULU UNIVERSITY OF APPLIED

SCIENCES

https://www.oamk.fi/fi/
OAMK FIN

6
FUNDACION PARA LAS TECNOLOGIAS AUXILIARES DE LA

AGRICULTURA

http://www.fundaciontecnova.com/
TECNOVA ES

7
KATHOLIEKE UNIVERSITEIT LEUVEN

https://www.kuleuven.be/kuleuven/
KU LEUVEN BEL

8
ATOS IT SOLUTIONS AND SERVICES IBERIA SL

https://atos.net/en/
ATOS ES

9
ROBOTNIK AUTOMATION SLL

http://www.robotnik.es/
ROB ES

10
AGVR BV

www.agvegroup.com
AGVR NL

11
NASEKOMO AD

https://nasekomo.life/
NASEKOMO BG

12
ENTOMOTECH SL

http://entomotech.es/
ENTOMOTECH ES

13
ENTOCYCLE LTD

https://www.entocycle.com/
ENTOCYCLE GB

14
SOCIETA AGRICOLA ITALIAN CRICKET FARM SRL

https://www.italiancricketfarm.com/
ICF IT

15
INVERTAPRO AS

https://www.invertapro.com/
INVERTAPRO NOR

16
FIELD LAB ROBOTICS BV

https://www.fieldlabrobotics.com/
FLR NL

17
FoodScale Hub

https://foodscalehub.com/
FSH RS

18
AgriFood Lithuania DIH

https://www.agrifood.lt/
AFL LT

19
CENTRO INTERNAZIONALE DI ALTISTUDI AGRONOMICI MEDITERRANEI

http://www.iamb.it/
CIHEAM IT

LEGAL NOTICE

The information and views set out in this application form are those of the author(s) and do not
necessarily reflect the official opinion of the European Union. Neither the European Union
institutions and bodies nor any person acting on their behalf may be held responsible for the use
which may be made of the information contained therein.

https://www.maastrichtuniversity.nl/
https://www.certh.gr/
https://www.hs-emden-leer.de/en/
https://www.luke.fi/
https://www.oamk.fi/fi/
http://www.fundaciontecnova.com/
https://www.kuleuven.be/kuleuven/
https://atos.net/en/
http://www.robotnik.es/
https://foodscalehub3-my.sharepoint.com/personal/dm_foodscalehub3_onmicrosoft_com/Documents/www.agvegroup.com
https://nasekomo.life/
http://entomotech.es/
https://www.entocycle.com/
https://www.italiancricketfarm.com/
https://www.invertapro.com/
https://www.fieldlabrobotics.com/
https://foodscalehub.com/
https://www.agrifood.lt/
http://www.iamb.it/

3

Table of Contents

Executive Summary ... 5

Introduction .. 6

1 Software solution built in CoRoSect ... 7

The common Map ... 7

1.1. Map creator (common) ... 7

1.2. Obstacles detector .. 10

Rationale of the election of the obstacles detector algorithm ... 13

Inclusion of Human motion prediction in the detection of Obstacles.. 14

1.3. Route manager .. 15

2 Conclusion ... 17

List of tables

Table 1 - Innovative aspects of the solution ... 12

List of figures

Figure 1 - ORB-SLAM2 results ... 8

Figure 2 - zed 2i stereo camera ... 9

Figure 3 - NAV2 costmap .. 9

Figure 4 - Detection of obstacles and depth map ... 11

Figure 5 - Depth map example using CV from a monocular camera .. 11

Figure 6 - IP camera for detection of obstacles .. 12

Figure 7 - Routes manager data flux ... 15

Figure 8 - Simulation of the route followed by a robot .. 16

4

List of Abbreviations and Acronyms

AGV Automatic Guided Vehicles

CV Computer Vision

DDS Data Distribution Service

GIS Geographic Information System

IMU Inertial Measurement Unit

IP Internet Protocol

JSON JavaScript Object Notation

MQTT Message Queuing Telemetry Transport

ROS Robotic Operating System

SFM Shop Floor Manager

SLAM Simultaneous localization and mapping

SOTA State-of-the-Art

YOLO You only look once

5

Executive Summary

CoRoSect includes in its core concept the coexistence of people and machines in the factory space of
insect farms. In such environments it is important to ensure that people are not exposed to danger
(safety first directive) while not affecting the overall performance of the factory. Current deliverable
alongside D6.7 Safety concept for robotic systems (planning) released in M12 and D6.9 Safety concept
for robotic systems (final) due to M36 describes all the measures taken in the project to ensure such
coexistence from the point of view of the experience gathered when building the software already
planned. Thus, D6.7 deliverable focused on the theoretical planning of the safety concept with a
discussion of all possible alternatives, the current deliverable, D6.8 documents the decision taken and
the actual elements finally built for the project and, finally, D6.9, due to M36, will include the
conclusions obtained after the real application of the software in the project´s pilots.
Since this is the second part of a three series documents, there will be some inevitable repetitions in
some general descriptions and overall concepts. We have kept these repetitions (with some minor
amendments) since they are needed to provide context for the document.

6

Introduction

[taken from D6.7] ”Safety comes first” is the first directive in the industry. CoRoSect project has the

objective of the automation of insect farms passing from current ”almost manual” operations stage

to a fully automated operational stage. Such automatization, that implies robots with minimal human

supervision, creates new risks in safety. In a fully automated farm, we will have autonomous robots

moving “elements” and operating in a dynamic environment at “high” speed and making their own

decisions (e.g. about the path to take). We should ensure that this does not create any hazard to the

human beings, no matter their behaviour (i.e. even if they enter into ”no trespass” areas or behave in

a dangerous way). On the other hand, we cannot override any existing security measures already in

place for the machines (that usually makes them stop when any problem or hazard occurs). Finally,

we want to improve the efficiency of the operation of these machines by preventing them to collide

and at the same time we want to keep them moving as much as possible to avoid interruptions, thus

improving overall efficiency. This creates for us three key requirements that we should fulfil (in order

of importance):

1 Humans must not be exposed to any danger at any moment.

2 Existing safety measures must not be overridden (even if this provokes machinery to stop working)

3 Operations, even if fully automated, should not be interrupted whenever possible, if adequate

and guaranteed permitted situations are present. Halting the machines should be always the last

option.

Current deliverable, result of the Task 6.7 Implementing safety control in robotic (planning), is the

second of a three-document series. It will describe the actual decisions and the software built in

CoRoSect for these safety related issues.

Section 1 will describe our software approach to the problem taking these requirements into account.

Section 2 summarizes the document results in the conclusion.

For the theoretical discussion about standards and possible software solutions, please refer to D6.7

Safety concept for robotics systems (planning) already delivered on M12.

7

1 Software solution built in CoRoSect

Following all the requirements described in D6.7, we have finally built three separate but

complementary software products:

1. Map creator (common component)

2. Obstacles Detector

3. Route manager

These three elements share a common map incorporated in a database written in PostgreSQL1 with

the GIS plugin (the result is called PostGIS2). This will be the “factory map” and will be also coordinated

with the maps used in any other software or hardware element (for example in the AGV and the shop

floor manager).

These three tools are independent. They communicate between them via JavaScript Object Notation

(JSON) messages (using MQ Telemetry Transport MQTT) and the PostGIS map.

The common Map
This is a common map in PostGIS that includes the 2D representation of the factory taken into account:

• Areas allowed for pass of the AGV: these areas are the “aisles” that are allowed for passing

• Named points of interest like “parking station”, “rearing station”, etc. These points will be

used for navigation proposes (e.g. “go from Parking station to Maturing station”)

complementing the coordinates.

This map will be created by the map creator tool based on SLAM (Simultaneous Localization And

Mapping), and then will be corrected manually if it is needed (for example to indicate small details),

additionally it will incorporate the points of interest of the factory under consideration.

We will need to coordinate or even share this map with other software and hardware components

like the AGV and the Shop Floor Manager in order to: 1) stablish the same origin of coordinates relative

to the factory map (typically in the lower left corner chosen arbitrarily as zero point), 2) coordinate

the “size” of the factory between maps so that the coordinates will be identical, and 3) set the same

points of interest so we can use them later for the routes communication flow (for example in “go

from Parking station to Rearing Station”).

1.1. Map creator (common)
This tool is not specifically a direct software outcome of CoRoSect (created as result of a specific task).

The intention of the tool is to support the creation of the common map of the factory to be shared by

all our components and coordinated with AGV and other tools.

For this product, we have explored two versions of SLAM algorithms and cameras (monocular and

binocular).

1 https://www.postgresql.org/
2 https://postgis.net/

8

1. ORB-SLAM2 with monocular camera

We built a software in Python based on ORB-SLAM2 (https://github.com/raulmur/ORB_SLAM2) with

the use of monocular camera (a “normal” IP camera). We checked the results and added some

complementary modules to 1) create the 2D projection of the result, 2) filter and improve the results,

3) complete the “lines” by joining points together (interpreted as walls) and 4) put the result into

PostGIS database.

The results were good but could be improved. We encountered limitations in our use cases (for a

factory-like layout) due to the use of a monocular camera (thus without depth information and with

a limited angle of view). We also found limitations in the case of “elements without features” like

continuous white walls that don’t provide features to be used by the algorithm thus making it difficult

to detect the shape of them (we can see some real results in Figure 1).

Figure 1 - ORB-SLAM2 results

2. ROS-ISAAC with binocular camera

We next moved to the use of another SLAM approach (ROS-ISAAC: https://github.com/NVIDIA-ISAAC-

ROS) with the addition of a binocular camera with IMU (Inertial Measurement Unit) to help complete

the map. For that propose, we have used a Zed2i stereo camera (https://www.stereolabs.com/zed-

2/) (Figure 2)

https://github.com/raulmur/ORB_SLAM2
https://github.com/NVIDIA-ISAAC-ROS
https://github.com/NVIDIA-ISAAC-ROS
https://www.stereolabs.com/zed-2/
https://www.stereolabs.com/zed-2/

9

Figure 2 - zed 2i stereo camera

This approach is more robust than the previous one in three key elements:

• Camera angle is now 120º. This allows us to add more “visual features” in each “pass”

• Camera has Inertial Measurement Unit (IMU). This IMU can be used by SLAM to complete and

complement the images

• Adds depth information that can be used to determine distances

The use of ROS-ISAAC implied the creation of an “adaptor” or data-bridge needed for adding the

results of ROS to the PostGIS database. For that, we created a DDS (Data Distribution Service)

subscriber (this is the protocol used by ROS2) to read the “costmap” (Figure 3) (in NAV2 format

https://navigation.ros.org/index.html) created by the tool and put it in our PostGIS database.

Figure 3 - NAV2 costmap

Note that this process doesn’t need to be “real time” and will be performed for each factory before

the real pilot action. The results, in PostGIS can be then annotated (using a specific annotation tool)

10

for setting the “points of interest”, used for synchronization of the map and corrected manually if

deemed necessary.

1.2. Obstacles detector

The tool called “obstacles detector” is a Python program that, using a monocular camera footage in

“near” real time is able to detect up to 22000 categories of objects. These objects are then considered

as obstacles if they are in the “passing” areas of the factory. Obstacles can be of any kind, static (i.e.

not moving) or dynamic (moving). Finally, the current position of these obstacles and the future

projection of their movement are sent to the “routes manager” to detect and avoid any possible

collision.

Step by step, the program does (Figure 4):

• Reads the common map from PostGIS database. This map is used to know the “passing areas”

and to position the obstacles detected.

• Reads the live footage of a camera and, for each frame:

o Corrects the image (using camera correction data created from a previous calibration

pass)

o Detects the possible obstacles and segment them adjusting the “mask” to the

detected element

o Tracks (i.e. follows) the object(s) as obstacles

o Detects the depth of these obstacles

▪ Corrects this depth to the real distance

▪ Smooths the distance “jumps” between frames using Kalman filter

o With the depth information, places the obstacles in the 2D map

o Creates a “future” projection of the movement of the obstacles (can also be static) for

the next seconds using a different Kalman filter

o Sends these information to the “routes manager” using Mosquitto (MQTT)

11

Figure 4 - Detection of obstacles and depth map

This detection is not limited to people (as described in Task 5.2) but also to any possible object in

22000 categories that can be a potential obstacle.

The camera used for this detection is not binocular, but monocular. The reason of this election is to

take advantage of the most typical cameras already present in factories (IP cameras). On the other

hand, this election makes the use of “depth” channel (Figure 5) impossible forcing us to use a CV

(Computer Vision) algorithm for estimation of depth. The camera that has finally being chosen is a

“commercial” one with the constraints determined by the scenario conditions of “low light”, “high

humidity” and “high temperature” (Figure 6).

Figure 5 - Depth map example using CV from a monocular camera

12

For each of the features described we have tried to use the best available algorithms in terms of

accuracy with the less latency added.

• Detection: has been made using Detic (based on Facebook Detectron2):

https://github.com/facebookresearch/Detic

• Fine adjustment of segmentation has been made using PointRend:

https://github.com/zsef123/PointRend-PyTorch

• Tracking: has been made using deepsort ported to cuda (own development)

• Depth estimation: we have used DPT transformer: https://github.com/isl-org/DPT

• Estimation of trajectory was made using Kalman

Note that our approach of use of monocular cameras is very innovative and different to current

approaches that typically uses binocular cameras attached to the robots. With this approach we try

to re-use the usual cameras already existing in most factories. In Table 1 we can see a summary of

some innovative aspects of our solution

Table 1 - Innovative aspects of the solution

Our approach Traditional approach

Use the cameras already present in the factory
(monocular) connected to the common net

Use specific cameras (binocular) attached to the
robots. Use of specific connectors

Detect people and as much categories as
possible (up to 22000)

Detect only people or a limited set of objects
(80)

Separation between analysis and camera,
allowing processing of multiple cameras with
the same software

Cameras and software are included in a common
block (usually with the robot). Extension to new
cameras is limited

Figure 6 - IP camera for detection of obstacles

https://github.com/facebookresearch/Detic
https://github.com/isl-org/DPT

13

Rationale of the election of the obstacles detector algorithm
In the core of the detection of people and obstacles, there is an object detector algorithm. A complete

study of the State of the Art (SOTA) will be included in D8.2 Autonomous and human aware robot

trajectory planning for safe and efficient HRC due to M32. Here we will discuss briefly the rationale of

the election of the algorithm taken into account the current SOTA.

Detection of people and objects has been led, from 2016 (which in computer vision is a long term) by

the YOLO (You Only Look Once) family of detectors. All these (and their successors) are trained using

COCO dataset (https://cocodataset.org/#home) with 80 categories (list taken from

https://github.com/srebroa/awesome-yolo)

• Yolo v1 (2016) Joseph Redmon ‘You Only Look Once: Unified, Real-Time Object Detection’
• Yolo v2 (2017) Joseph Redmon ‘YOLO9000: Better, Faster, Stronger’
• Yolo v3 (2018) Joseph Redmon ‘YOLOv3: An Incremental Improvement’
• Yolo v4 (2020) Alexey Bochkovskiy ‘YOLOv4: Optimal Speed and Accuracy of Object

Detection’.
• Yolo v5 (2020) Glen Jocher - PyTorch implementation (v1 to v4 Darknet implementation).
• PP-Yolo (2020) Xiang Long et al.(Baidu) ‘PP-YOLO: An Effective and Efficient Implementation

of Object Detector’.
• Yolo Z (2021) Aduen Benjumea et al. ‘YOLO-Z: Improving small object detection in YOLOv5

for autonomous vehicles’
• Yolo-ReT (2021) Prakhar Ganesh et al. ‘YOLO-ReT: Towards High Accuracy Real-time Object

Detection on Edge GPUs’
• Scaled-Yolo v4 (2021) Chien-Yao Wang et al. 'Scaled-YOLOv4: Scaling Cross Stage Partial

Network'
• YoloX (2021) Zheng Ge at all. ‘YOLOX: Exceeding YOLO Series in 2021’.
• YoloR (You Only Learn One) (2021) Chien-Yao Wang et al. ‘You Only Learn One

Representation: Unified Network for Multiple Tasks’
• YoloS (2021) Yuxin Fang at all. 'You Only Look at One Sequence: Rethinking Transformer in

Vision through Object Detection'
• YoloF (2021) Qiang Chen at all. 'You Only Look One-level Feature'
• YoloP (2022-v7) Dong Wu at all. ‘YOLOP: You Only Look Once for Panoptic Driving

Perception’.
• Yolov6 (2022) Hardware-friendly design for backbone and neck, efficient Decoupled Head

with SIoU Loss,
• Yolov7 not official (2022)
• Yolov7 official (2022) Chien-Yao Wang at all. 'Trainable bag-of-freebies sets new state-of-

the-art for real-time object detectors'
• Yolov8 (2023) developed by Ultralytics

Accuracy and speed in detection has increased with each new version.

On the other hand, in the category of detection of “many” categories we find the Facebook family of

algorithms called Detectron. Detectron is a software system that implements SOTA object detection

algorithms, including Mask R-CNN (Marr Prize at ICCV 2017), RetinaNet (Best Student Paper Award

at ICCV 2017), Faster R-CNN, RPN, Fast R-CNN and R-FCN. The timeline of Detectron is:

• Detectron (2018): https://github.com/facebookresearch/Detectron

https://cocodataset.org/#home
https://arxiv.org/abs/1506.02640
https://github.com/longcw/yolo2-pytorch
https://arxiv.org/abs/1612.08242
https://github.com/ultralytics/yolov3
https://arxiv.org/abs/1804.02767
https://github.com/AlexeyAB/darknet
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://github.com/ultralytics/yolov5
https://github.com/PaddlePaddle/PaddleDetection
https://arxiv.org/abs/2007.12099
https://arxiv.org/abs/2007.12099
https://arxiv.org/abs/2112.11798v2
https://arxiv.org/abs/2112.11798v2
https://github.com/guotao0628/yoloret
https://arxiv.org/abs/2110.13713
https://arxiv.org/abs/2110.13713
https://github.com/WongKinYiu/ScaledYOLOv4
https://arxiv.org/abs/2011.08036
https://arxiv.org/abs/2011.08036
https://github.com/Megvii-BaseDetection/YOLOX
https://arxiv.org/abs/2107.08430
https://github.com/WongKinYiu/yolor
https://arxiv.org/abs/2105.04206
https://arxiv.org/abs/2105.04206
https://github.com/hustvl/YOLOShttps:/github.com/hustvl/YOLOS
https://arxiv.org/abs/2106.00666v3
https://arxiv.org/abs/2106.00666v3
https://github.com/megvii-model/YOLOF
https://arxiv.org/abs/2103.09460
https://github.com/hustvl/YOLOP
https://arxiv.org/abs/2108.11250
https://arxiv.org/abs/2108.11250
https://github.com/meituan/YOLOv6
https://github.com/jinfagang/yolov7
https://github.com/WongKinYiu/yolov77
https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/2207.02696
https://github.com/ultralytics/ultralytics
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1605.06409

14

• Detectron2 (2022): https://github.com/facebookresearch/detectron2

As a evolution of Detectron2, Detic 3 (https://github.com/facebookresearch/Detic) released in 2022 is

able to detect 22000 categories of objects.

Detic is not, by any means the most accurate or fast algorithm of detection of objects, we have chosen

it based on the following reasons:

• Possibility of detecting up to 22000 different categories of possible obstacles and people. This

should include all possible real obstacles that can be found in a real insect farm

• Possibility of detecting people in a effective way in the distance range considered of 15 meters

(limited by the depth estimation algorithms and the camera)

• Accurate of detection, if not the best of breed, is good enough for the task

• Real time requisites for the detection does not need strict real time. We can take some few

seconds for the analysis considering the relative speed of people and the “projection” of

trajectories that we apply (projection for the next seconds)

Inclusion of Human motion prediction in the detection of Obstacles

Task 5.2 explicitly mentions the use of human motion prediction in the task description. We have

included this motion prediction included inside the obstacles detector tool. We could have detected

the people and the rest of obstacles using separate algorithms (in the same or different tools), but we

decided not to do that.

The reasons for this decision were:

• We have included the detection of people included with the detection of “objects”. With this
mixture we can detect more categories of objects, but, at the same time, can lose precision
in the detection of people. We are aware of this issue, but since the detection range will be
limited (in our estimation) in real application to a range of less than 15 meters to the camera
there is no real difference in the detection of people. Note that the idea, in final deployment
is to combine multiple cameras (with the corresponding detectors) to cover the entire space.
The estimation of the range of 15 meters is due to the use of “depth” detection algorithms
that are not trustable after this distance and limitations in the calibration of the monocular
camera used. As an additional reason, the most popular solutions for detection of people are
not “pure” but include, in the training, many other categories of objects. For example a
typical approach is to have the full COCO dataset that includes 80 categories of objects.

• All objects detected as obstacles have their motion “projected” (using Kalman) thus covering
the motion prediction for people.

• Arguably, we could have included the detection of the “pose” or people or even the
movement of limbs and hands. We have consciously not done that because we are
interested in the detection of potential collisions in a longer range (meters). We are not
including “fine” detection since i) this is already included in current security of the robots
(AGV for example stops if it collides with an obstacle, robotic arms stop if someone enters
their “cages”) and ii) the intention is to detect people far from the robot, project their
trajectories and avoid the potential collision before it happens in order to keep the robot
moving at all times. With these considerations in mind, detecting the limbs position or even
fingers do not add any advantage to the task.

3 Detecting Twenty-thousand Classes using Image-level Supervision,
 Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, Ishan Misra,
 ECCV 2022 (arXiv 2201.02605)

15

• The detection of “every possible object” as an obstacle, is not clearly included in T5.2 nor in
T6.3 but we think that by including it we can make the use-case broader and more
ambitious. We think that this is also a good extension of the description of Task 6.3 that
completes the task to include every possible object that can be found in a real situation.

1.3. Route manager

The final tool in the set is the route manager tool. This tool is a separate module that has the

responsibility of creating and managing the routes of any moving element (i.e. a robot). In our specific

case this will be the AGV. The module can (Figure 7):

• Create a new route under Shop Floor Manager demand

• Send the route to the robot using Mosquitto MQTT

• Follow any number of routes by receiving the new position of the robot periodically

• Receive any detected obstacle from the “obstacles detector”, check it against the trajectory

foreseen and, if needed recalculate and send the route again to the robot.

Figure 7 - Routes manager data flux

For all these missions, the module first loads the common map from PostGIS database. Then, it waits

for the Shop Floor Manager to order a new route for a named robot (e.g. “AGV1”) from a position to

a another (e.g. from (33,14) to “Rearing Station”). After that, it calculates the route taking into account

the walls and a “safe” zone around them to avoid collisions. For the route calculation it uses D*

16

algorithm.4 After that, it sends the starting points of the route to the robot (the AGV). In this point,

the module starts tracking the AGV position in a continuous loop:

• Sends new set of points to the AGV (the “next” positions)

• AGV sends periodically the position

• If AGV reaches one of the “next” positions, we send new ones

• Until we reach the end of the route

• Then, it informs to the Shop Floor Manager that the route has ended

If during this process, the “obstacle detector” module detects a new obstacle, then the Route Manager

checks if the new obstacle detected is in the path of the robot. If the new obstacle is in the path of the

robot, then the algorithm recalculates the route (using the updated space) and start sending the new

route to the robot (Figure 8).

This process can be done for any number of robots simultaneously.

Figure 8 - Simulation of the route followed by a robot

4 Stentz, A. (1997). Optimal and efficient path planning for partially known environments. In

Intelligent unmanned ground vehicles (pp. 203-220). Springer, Boston, MA.

17

2 Conclusion

This deliverable is the second of the three dedicated to the safety planning for robotic systems. In the

first deliverable, we described the requirements and what we planned to create for the task. In the

current document, we have described what we have been building for the tasks in three separate

software modules. In the third and last version of this document D6.9 Safety concept for robotic

systems (final) due to M36 we will describe the behaviour of these software modules during the real

pilots and the subsequent adjustments we will have had to make.

18

