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of insects in food and feed value chains, raises production costs and 
reduces demand for and the production volumes of insect products.  
This deliverable reviews biological, technical, and economic aspects 
of processes to achieve biologically desirable or acceptable conditions 
at the different steps of the production process, while accounting for 
acceptable variations in production results. It also reviews the key 
parameters, which could be monitored by sensors and parameters 
which must be taken into account in task 3.3 when developing model-
based decision support system for Hermetia illucens (black soldier fly, 
BSF), Tenebrio molitor (mealworm) and Acheta domesticus. 
BSF and mealworms are monitored mainly at container or population 
level rather than individual level. House crickets are also monitored at 
population level, but individuals are more visible especially at the 
later stages of development. Rearing conditions vary by insect’s 
development stage and some stages have unique biological needs. 
Hence, diverse sensing approaches suitable for both dry and wet 
conditions are needed to assess production performance. 
For BSF, important parameters to be monitored include temperature, 
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information also on the nutritional content of feed and to increase the 
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to sustain continuous generations of offspring.  
In mealworms, high larval density may cause pupation inhibition, 
cannibalism, incomplete development and lower growth rates. 
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developmental time, which increases the challenges of controlling the 
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1 Introduction and approach  

1.1  Background and objectives of the study 
Due to the continuous growth of the world population, which is expected to reach 9.3 billion people 

by 2050, the demand for food and protein sources for feed is increasing. Insects are the largest group 

of living organisms on the Earth (Stork, 2018) and are used as human food in several parts of the world 

(Jongema, 2017). Edible insects could both resolve human health issues such as malnutrition and food 

insecurity and be a solution to the environmental degradation due to agro-industrial production 

(Wade and Hoelle, 2019). The use of insects as for food and animal feed is gaining a growing interest, 

and several production projects operating at an industrial scale already exist.  

The advantages of rearing insects are many: they grow and reproduce quickly and have a high feed 

conversion efficiency. From hundreds of thousands existing insect species, only a few have really been 

farmed for food or feed (for example, black soldier fly larvae (Diptera), common housefly larvae 

(Diptera), silkworms (Lepidoptera), termites (Isoptera), grasshoppers (Orthoptera), locusts 

(Orthoptera) and yellow mealworm larvae (Coleoptera)) under large scales (Jongema, 2017). In 

addition to produce food or feed, insects have been used in other bioconversion processes. 

Most livestock and agricultural production systems have some level of automation to reduce the 

expense of labor input in routine activities. However, in insect farming, substantial amount of labor 

input is still required to complete tasks such as feeding, collection, cleaning, and rehousing (Rumpold 

and Schluter, 2013). This limits the use of insects in food and feed value chains. In order to transform 

insects to an attractive alternative source of feed and food, automation and robotization must be 

further developed to reduce labor intensity and decrease the production costs, and hence end 

products’ prices, and to ensure the availability of sufficient volumes of insect products. In addition to 

the labor costs, the rearing conditions such as temperature, light (stray or unintended light), 

photoperiod, humidity, ventilation, stray sounds, vibrations or odors, rearing containers, population 

density, oviposition sites, feed and water availability, feeding behavior, feed composition and quality, 

inbreeding and microbial contaminants must be controlled at levels which enable successful (mass) 

production of insects (Clifford et al., 1977, Cohen 2018, Rumpold and Schluter 2013). 

A digital representation (a digital twin) of the farming process can help to design and improve the 

rearing process as a whole. Data-driven analytic approaches and modelling based on existing data can 

be utilized to optimize farming processes and technology. Moreover, using artificial intelligence and 

deep data mining can enhance yield and sustainability (Chia et al., 2018). In this perspective, 

autonomous robotics, centralized distribution systems, process standardization and interaction of 

farming techniques enable reliable, stabile, and low-cost insect production. Insect handling systems 

like automated feeding, (de)stacking, (un)loading, sorting, and tipping technologies are used in 

efficient insect production systems (Lai et al., 2020, Wang and Zhu 2020).  

Measuring tools, sensor technology and internet-of-things can be used to monitor the rearing 

environment and performances of the insect farm in real-time (Sandeepa and Thavarajah 2021, 

Vajpayee and Yogi 2021). Since insects develop and grow rapidly and they may be sensitive to changes 

in rearing conditions, it is essential to make necessary adjustments in the rearing process based on 

the monitored parameters. In order to control the process successfully, it is essential to identify the 

key parameters to be monitored, the desirable range of parameters’ values and their contribution to 

the outcome of the rearing process.  
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The smart rearing system can facilitate hatching, feeding, monitoring the growth and emergence of 

insect larvae and pupae (Jansen et al., 2019, Massaro et al., 2018). An integrated camera system with 

a neural network for example can assist in assessing the constitution of worms by using the segments 

of the larvae for evaluation (Kröncke et al., 2020). However, different rearing environments may 

require different sensing solutions. For example, insects living and growing in a moist substrate likely 

require different monitoring methods than insects living on the surface of dry substrate. 

The CoRoSect decision support system (DSS) will be part of the Information Management System (IMS) 

and Manufacturing Execution System (MES), which will be used to connect, monitor, and control the 

overall manufacturing process and data flows within the insect farm. The CoRoSect system will 

consider four interlinked automation cases, which comprise: (i) transport of the crates containing the 

insects; (ii) detection and measurement of the rearing conditions; (iii) management of the rearing 

processes; (iv) insect handling and processing.  

The overall aim of CoRoSect WP3 is to gain understanding on biological, technical, and economic 

requirements of insect rearing processes and improve them through management, sensing, and 

automation. The aims are (i) to identify and describe factors that are critical for a successful and 

sustainable insect rearing process; (ii) to identify, test and facilitate the use of printed sensors in 

monitoring insect rearing processes; (iii) to develop sustainable insect diets for mealworm, crickets, 

and black soldier flies; (iv) to present a model-driven support system for optimizing insect rearing.  

This deliverable focuses on characterizing biological, technical, and economic aspects of the 

subprocesses to achieve biologically desirable or acceptable conditions at the different steps of the 

production process, while accounting for biologically and economically acceptable variations in 

production results. The deliverable reviews the key parameters, which could be monitored by sensors, 

their desirable range of values, and the significance of automating the rearing process, and 

summarized data needed to develop a digital representation of insect farming processes. The reported 

work is closely related to tasks 2.1, 2.2, and 3.3, and D2.2 of the CoRoSect project. As opposed to end-

user derived data of D2.2, D3.1 is mainly based on information extracted from the scientific literature 

and it aims at generalizable information on insect rearing. In addition, D3.1 supports tasks 3.2 and 3.3. 

As three insect species Hermetia illucens (black soldier fly, BSF), Tenebrio molitor (mealworm) and 

Acheta domesticus (house cricket) will be considered in the CoRoSect project, the following chapters 

will consider requirements for all these species. 
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1.2  Summary of methods applied for this deliverable  
The rearing processes of H. illucens (black soldier fly), T. molitor (mealworm) and A. Domesticus (house 

cricket) were first described by using expert knowledge of the authors and other partners involved in 

the CoRoSect H2020 project. This knowledge was complemented with information that was available 

in published rearing guides and other relevant literature (such as Caruso et al., 2013; Dortmans et al., 

2017; Joly and Nikiema, 2019). Moreover, end-user derived knowledge among CoRoSect partners was 

utilized, and this information (with flow charts) was described in deliverable 2.2. These consultations 

were done together with CoRoSect WP2 during year 2021. 

Sensor technologies can be used to monitor and control the insect rearing process. For these 

purposes, it was identified what parameters need to be monitored and what parameters should be 

controlled. In order to summarize information concerning rearing process and ambient condition 

parameters, as well as the desirable range of parameter values, scientific literature concerning the 

rearing of each three insect species was briefly reviewed and summarized. Studies for the review were 

searched by using search engines (Google, Web of science). While being a wide review, this was not a 

systematic review. The key words in the search included the names of insect species, and key words 

describing biology, rearing, farming, survival, growth and rearing conditions of insects.  

The titles and abstracts of studies identified by the search were screened and studies which appeared 

to provide relevant information were selected for more detailed reading. Finally, qualitative, and 

quantitative information on the relevant rearing process parameters were extracted from the studies. 

These data are summarized in the results tables of this deliverable.  

We also identified in what steps sensors can provide the most useful information regarding the 

processes. The potential of sensors to support the monitoring and control of the biology of insect 

rearing process was summarized by combining research team’s expertise on available sensors and 

their potential applicability in rearing process.  

In order to characterize economic significance of the outcome of insect rearing, the costs items of 

insect rearing each insect species were identified. Then, the sensitivity of rearing process outcome to 

changes in biological parameters was examined as a desk work in order to characterize how sensitive 

the process was to failures in the insect rearing process. To identify the sensitivity of costs to 

parameter alterations, the most important performance parameters of rearing were varied according 

to the range of variation of identified by the literature review.  
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2 Black soldier fly (Hermetia illucens) 

2.1 Bio-physical information on the rearing process 

2.1.1 Basic information  
The black soldier fly (H. illucens, order Diptera, family Stratiomyidae) is currently one of the most used 

insect species to produce biomass for food and feed in the industrialized countries. In wild, it feeds on 

dead and decomposing organic material and is found globally in temperate and tropical regions 

(Sheppard et al., 1994). The widespread distribution and the ease of maintaining in a colony (Sheppard 

et al., 2002) has contributed to the global interest in its mass production as protein source (Tomberlin 

et al., 2015).  

The farming of BSF is transitioning from small-scale towards larger, industrial scale production. 

Transforming the most labor-intensive work phases into an industrial scale and automated process is 

essential for supplying large volumes of BSF products at competitive prices to the markets. Thanks to 

emerging technology development and published BSF breeding guides (Caruso et al., 2013; Dortmans 

et al., 2017; Joly and Nikiema, 2019), the basic biological and technological knowledge has become 

more widely available to the practitioners. However, the full potential of BSF has not yet been 

exploited.  

2.1.2 Life cycle  
Hermetia illucens is less than 3 cm long and has a wasp-like appearance as an adult. During this stage 

is blue or black, while the color varies from pale beige to black among the other stages. During the 

development, black soldier fly experiences a complete metamorphosis with five main stages, each 

characterized by a duration: egg (4 days), larva (18 days), prepupa and pupa (14 days), and adult (9 

days) (Sheppard et al., 2002, Figure 1). The life cycle in optimal conditions is only about 45 days in total 

(Barragán-Fonseca et al., 2017). Hermetia illucens spends the larval stage in the growing media 

(substrate) and moves away from dryer areas when transforming from prepupa to pupa, eventually 

leaving the substrate when transforming from pupa to an adult (Diener, 2010; Joly and Nikiema, 2019).  

This species lives in groups of several thousands of adults or larvae grow in dense colonies, which can 

reach population density up to 14kg/m2. The adaptation to diverse environments and nutrient sources 

and the natural development in large groups make the species well suited to mass rearing. The larvae 

can reduce the feedstock weight by 50–80% and convert up to 20% (on a total solid basis) into larval 

biomass within 14 days (Diener et al., 2011a; Lalander et al., 2015, Zhou et al., 2013). However, the 

diverse environments required for the live stages and larvae living submerged in a substrate comprises 

a challenge for monitoring progress and survival and for controlling or optimizing each rearing step.  

While adult maturation, mating behavior and oviposition can be visually monitored and the adult 

stage of BSF rearing occurs in open air, the main stage influencing the production outcome (i.e., the 

larval stage), occurs in a wet matrix and in darkness, which hampers the monitoring options. Indirect 

sensing methods are therefore needed. When monitoring larvae, four observations per hour are 

needed. Alarm thresholds for deleterious extreme conditions should be set and ammonium gas levels 

should be monitored closely to enhance both human and animal wellbeing. Monitoring the larvae is 

mainly based on ambient or growth substrate monitoring, while in the adult stages monitoring is more 

focused on ambient environment or on the use of remote sensing solutions. However, the production 

systems’ details vary and influence the monitoring options, and in practice, only a subset of potentially 

important factors can be monitored. Crate groups might be mixed at the mating stage and sometimes 

in egg or neonate stage, making detailed group ancestry documentation challenging. 
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Figure 1. Approximate life cycle of black soldier fly. 

 

2.1.3 Key performance parameters of BSF 
Currently, the rearing of BSF in Europe is mostly carried out in small scale and with little automation. 

Increasing the scale of farming to a level where this species could make a substantial contribution to 

the volume food production requires that automation and the control of rearing process is improved, 

as this will influence the competitiveness. In practice, this requires automating both the labor-

intensive parts of the process and process monitoring and developing decision support tools which 

facilitate data-driven control of the rearing process. For this, it is essential to identify what needs to 

be monitored, how and under what range the parameter values are expected to occur. During the life 

cycle of BSF, several parameters are measured to assess the performance of the rearing process (Table 

1, Figure 2). 

2.2 Sensing approaches to monitor the rearing process 
Precision livestock farming is a tool for active livestock management with a focus on enhancing the 

economic, social, and environmental sustainability of farming. In addition to animal identification, 

physiological measurements which can be made by sensors include feed and water intake, 

movements, individual weight, body temperature, respiration rate, sweating rate, immunosensors, 

and heart rate variability. Some of these parameters are relevant also for BSF, and they can be 

measured by different types of invasive and non-invasive sensors. BSF are generally followed at 

container or population level rather than individual level. (Table 2). However, H. illucens fly stages 

have biological unique needs, thus diverse sensing approaches are needed to evaluate their 

performances. 
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Table 1. Life-history traits and performance (mean value ± standard deviation, SD) of black soldier fly fed either chicken feed 
or diets of similar crude protein and fat contents as chicken feed. 

Life-history or 
performance trait1 

n2 Mean±SD References  

Egg stage (days) 3 2.7±0.6 Gobbi (2012) 

Larval developmental time 
(days)  

12 24.2±2.7 Diener et al. (2009b, 2011b), Gobbi (2012), Nguyen et 
al. (2013), Oonincx et al. (2015a), Tomberlin et al. 

(2002) 

Prepupa and pupa 
developmental time (days) 

3 15.8±6.9 Nguyen et al. (2013) 

Pupal developmental time 
(days) 

3 7.1±1.1 Gobbi (2012) 

Total cycle (days)  7 42.6±5.1 Gobbi (2012), Nguyen et al. (2013), Tomberlin et al. 
(2002) 

Larval survival rate (%)  8 86.2±10.0 Gobbi (2012), Nguyen et al. (2013), Oonincx et al. 
(2015a), Tomberlin et al. (2002) 

Prepupal survival rate (%)  1 93.0±2.9 Lalander et al. (2018) 

Pupal survival rate (%)  6 88.0±15.6 Gobbi (2012), Nguyen et al. (2013) 

Larval weight (g FM)  3 0.204±0.046 Diener et al. (2011b), Nguyen et al. (2013) Tomberlin 
et al. (2002) 

Larval length (mm) 1 20.5 Nguyen et al. (2013) 

Larval DM content (%)  1 33.9±2.28 Oonincx et al. (2015a) 

Prepupal weight (g FM) 4 0.176±0.07 Diener et al. (2009b), Gougbedji et al. (2021), 
Lalander et al. (2018), Tomberlin et al. (2002) 

Prepupal weight (g DM)  5 0.058±0.02 Diener et al. (2009b, 2011b), Gougbedji et al. (2021) 

Prepupal DM content (%)  3 37.1±1.9 Diener et al. (2009b), Gougbedji et al. (2021), 
Spranghers et al. (2017) 

Pupal weight (g FM)  6 0.145±0.005 Gobbi (2012) 

Adult weight (g FM)  1 0.059±0.008 Tomberlin et al. (2002) 

Adult weight, male (g FM) 1 0.053±0.007 Tomberlin et al. (2002) 

Adult weight female (g FM) 1 0.064±0.006 Tomberlin et al. (2002) 

Adult weight (g DM)  1 0.024±0.007 Diener et al. (2009b) 

Adult length (mm)  2 15.8±0.14 Gobbi (2012) 

Adult length male (mm)  1 15.7±0.24 Gobbi (2012) 

Adult length female (mm)  1 15.9±0.21 Gobbi (2012) 

Adult longevity, with water 
(days)  

1 8.9±0.57 Tomberlin et al. (2002) 

Adult longevity, without 
water (days)  

1 6.8±0.49 Tomberlin et al. (2002) 

Adult mortality rate (%) 3 24.4±? Nguyen et al. (2013) 

ECI DM (%)  1 23.0±5.3 Oonincx et al. (2015a) 

N-ECI 1 52.0±12.2 Oonincx et al. (2015a) 

ECD FM (%) 1 29.5±5.9 Diener et al. (2009b) 

FCR  1 1.8±0.7 Oonincx et al. (2015a) 

Dry weight reduction of 
feed (%) 

3 35.1±8.0 Diener et al. (2011b) 

WRI 1 2.34±1.15 Diener et al. (2009b) 

Biomass conversion ratio 
(% DM) 

1 12.8±0.7 Lalander et al. (2018) 

1 DM = dry matter, ECD = efficiency of conversion of digested food, ECI = efficiency of conversion of ingested 

food, FCR = feed conversion ratio, defined as feed intake /average daily gain, WRI, Waste reduction index, 

defined as substate consumption/feeding time, FM = fresh matter. 

2 Number of independent experiments. 
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T=temperature, RH=relative humidity, H2O=moisture, D:L=Dark:light cycle, L. = light, A=audio, V=visual, CO2=carbon dioxide, 

NH3= ammonia (might be measured as dissolved ammonium), dm=dry mass 

Figure22. A simplified flow chart sketching time-stamped sensing and tracking data that can be used for quality assurance 
and improvement in the biological black soldier fly larvae production process. Technical flow chart is presented in Figure 9 of 
D2.2. 

Sensor-based data about the location and proximity of insects can be used to control and monitor 

resources and actions. Temperature, humidity, air pressure, (bio)chemical and gases can be used to 

maintain a benign environment and substrate condition, to observe environmental deviations that are 

compromising a successful production process as well as to forecast the progress of insect rearing as 

a process. Machine vision and other imaging technologies can be used to monitor a range of different 

features such as hatching and oviposition performance as female activity, the number, activity and 

condition of neonate larvae, prepupae, pupae and adults, egg mortality and the condition of substrate. 

Motion that can be measured by monitoring the batch (e.g. crate) can provide information on activity 

and the status of insect population, whereas changes in the weight of the batch and the substrate can 

provide indications on the growth of insects and their mortality. 
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Table2 2. Potential indicators to be monitored by sensors to inform about the farming process status by the stage of farming cycle and by approach to measure indicators, and indicators of 
successful rearing outcome of each rearing stage of black soldier fly. 

Sensing approach Egg Neonate Larva Prepupa and pupa Maturing adult Breeding adult 
ID and location of 

animal 
Eggie, 

Eggie container 

Attractant container 

Neonate container 

Feed batch 

Crate 

Substrate batch 

Pupa container 

Matrix batch 

Dark cage 

Adult batch 

Breeding cage 

Breeding batch 

Ambient conditions Temperature 

Humidity (RH) 

Light cycle 

Temperature 

Humidity (RH) 

Temperature 
Humidity (RH) 
Light intensity 

Gases* 

Temperature 

Humidity (RH) 

Temperature 

Humidity (RH) 

Temperature 

Humidity (RH) 

Light intensity 

Loudness 

Contact (in crate)   Substrate 
temperature, 
moisture, pH, 

salinity and nutrient 
composition** 

Temperature 

Moisture 

  

Noncontact Clutch count 

Hatching 

Larval count and 
activity 

Larval count, 

activity, and color 

distribution 

Substrate surface 

color, structure and 

temperature 

Crate gases* and 
humidity 

Prepupal count and 

activity 

Surface gases (CO2, 
O2) and humidity 

 Breeding status 

Activity 

Upon sample removal Moisture 

Hatching proportion 

Survival Moisture 

pH 

Salinity 

Composition 

Moisture Enclosing proportion 

Average weigh 

 

Indirect contact Eggie weight 
(pre/post) 

Average weight     

Indicators of rearing 
success 

Number of eggs and 
neonates 

Survival rate of 
neonates, number 

of larva 

Biomass growth of 
larva, survival rate 

of larva 

Biomass growth of 
pupa, number of 
adults released 

Number of mated flies Amount of oviposition 

* CO2, NH3, CH4, O2, **Approximate nutrient composition of substrate is to be known in advance. 
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2.2.2 Egg stage 
BSF egg production takes place in controlled-environment breeding cage or similar space ranging from 

one cubic meter to tens of cubic meters, with open air and landing areas that host from thousands to 

hundreds of thousands of adult flies. The rearing facility of egg stage needs to be maintained under 

stable conditions, thus approximately 27°C, 60–70% relative humidity, and 14:10 L:D light cycle 

(Tomberlin et al., 2009). A female lays a single clutch of eggs (320–900) two days after mating (Booth 

and Sheppard 1984; Tomberlin and Sheppard, 2002; Tomberlin et al., 2002; Sheppard et al., 1994). 

The egg is approximately 1 mm in length and creamy white in colour (Diclaro and Kaufman 2009). 

Egging racks, or eggies, are placed near decomposing grain saturated with water (substrate) or other 

rotting organic matter. Decaying food scrap will attract female to lay their eggs (Ortiz et al., 2016; Yang 

2017). Egging equipment can be a weighed cardboard blocks (2–3 cm thick, 3–5 cm long, 2–3 cm wide) 

or reusable stacks of wood with small crevices. Females will oviposit in the cracks, typically filling a 

small number of neighboring holes, and the quantity of eggs oviposited by females can be estimated 

by counting the number of filled holes and measuring the increased total weight. While egg hatching 

takes about four days in optimal conditions (Booth and Sheppard, 1984; Tomberlin et al., 2002), low 

temperatures can significantly impact hatch time and viability (Holmes 2010).  

The focus in the egg stage is in monitoring the environment to ensure favorable ambient conditions 

for the egg development. Relative humidity of 25% is known to cause high rates of desiccation and 

mortality (Holmes et al., 2012) and would be observed also as fewer neonates per egg mass. Recording 

both environment and the efficiency of egg production and hatching rate can reveal problems such as 

calibration errors or harmful contaminations or lowering vitality of the breeding stock which require 

closer attention. The collected eggs can be partitioned into two groups, first one to maintain the 

colony and the second for mass production. 

Batch and equipment IDs and tending activity are useful additional information for following the 

performance egg production. If the breeding cage is emptied periodically, it is possible to identify the 

parent batches and therefore keep traceable record over the lifecycle of the batch. The approximate 

ovipositing time and egg number can be recorded when all egging equipment are changed 

periodically. Many eggs of an egg clutch typically hatch approximately at the same time and this might 

be detected visually as movement and visual change in the egg plug of in the crack.  

2.2.3 Larva stage 
Eggies are placed and incubated in small containers. When hatching occurs, the larvae fall in the 

container, and a small amount of a standard diet, such as the Gainesville diet (Hogsette, 1992), at 70% 

moisture, is provided to the neonate larvae for the first 5–7 days (2–3 first instars). The small larvae 

might be counted and subdivided to known sized groups either before or after the first feeding and 

growing period. This can be based on either direct counts or determining average weight based on 

subsamples and using the neonate mass weight as a proxy for the larval count. As counting and 

subdividing larvae can be time consuming, automation with for example artificial intelligence-based 

counting methods can be used in BSF production. The neonates are sensitive to variation in 

temperature. For example, Tomberlin et al. (2009) reported 74–97% survival at 27 and 30°C but only 

0.1% at 36°C. 

Under controlled conditions (Gainesville diet, at 28°C, 75% RH, photoperiod of 16:8 (L:D) h), BSF larval 

development lasts 18–25 days and they grow from 3 mm to about 20 mm (Zhou et al., 2013). The 

larvae begin as light cream turning to light brown in later with a small black head (Sheppard et al., 

2002). When larvae are continuously fed and the growing aims to produce mature pupa, feeding can 
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be terminated when approximately 40% of the larvae are black, which indicates they have entered 

the prepupal stage and do not ingest feed anymore (Tomberlin et al., 2002). 

Rearing conditions influence the development time of BSF. In extreme case, the development time 

may increase up to four months (Furman et al., 1959; Tomberlin et al., 2002, 2009; Holmes 2010; Myers 

et al., 2008). Temperature is usually closely followed and adjusted, because even small temperature 

differences may influence development time. For example, Tomberlin et al. (2009) reported larvae at 

27°C to take 4.1 days longer to complete larval and pupal development than those at 30°C (33.6 vs. 

37.7 days). The impact of the substrate is more complex to predict and analyse compared to 

temperature. The larvae consume from 25 to 500 mg organic matter per individual per day depending 

on their size, the type of the substrate available and environmental conditions (e.g., moisture content 

of the feedstock, temperature, and air supply) (Makkar et al., 2014).  

Indicative target features are presented in Table 3. The basic nutriment requirements (vitamins, 

minerals, amino acids) and potential anti-nutritional compounds present in substrates remain 

inadequately known (Caruso et al., 2013). Interestingly, within certain limits substrate moisture can 

be more important than one of the most basic nutritional traits, the ratio between protein and 

carbohydrate content (Cammack and Tomberlin, 2017). Even if larvae are photophobic (Zhang, 2010), 

H. illucens reared in complete darkness develop slower than those reared in the presence of light (8 h 

or 12 h per day, at 27°C) (Holmes et al., 2017).  

Monitoring the ambient environment at room or incubator level is crucial when larvae are fragile 

neonates. At later stages, the ambient environment has less direct impact, as the larvae are embedded 

in moist substrate. Gregarious species with high metabolic activity and high-density production 

systems produce significant levels of carbon dioxide and heat (Slone and Gruner, 2007; Hansen et al., 

2006). In addition to insect heat production, microorganisms present in the rearing media also 

produce heat and gasses. As some substrates may be more easily consumed by larvae after bacterial or 

fungal decomposition (Dortmans et al., 2017) certain microbial processes can be applied as a substrate 

pre-treatment (Yu et al., 2011). Heat and gas production of both insects and microorganisms should 

be estimated and considered in the system design and monitoring (Ortiz et al., 2016). In addition to 

the ambient environment, this heat generation and mechanical mixing by the larvae influence also the 

substrate drying. Larvae stage is the most variable and ready for optimization and the monitoring data 

can be used not only ensuring normal benign conditions, but also predicting the development. The 

larvae stage has the clearest needs for crate-specific monitoring. 
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Table3 3. The desirable range of parameter values for black soldier fly rearing. 

Parameters  Range of favourable rearing conditions Parameters  References 
Density Larva: 1.2…5 larvae/ cm2 

1…2.5 larvae/g (substrate) 
Adults: 6500 ind./m3 

 Parra Paz et al. (2015), Pastor et al. (2015), Gobbi et al. (2013), Hoc et 
al. (2019) 

Light intensity 
(μmol/m2 /s) 
λ 450–700 nm 

Adults: 135–200 Adults: >60 Alvarez (2012), Holmes (2010), Tomberlin and Sheppard (2002), Zhang 
et al. (2010) 

Humidity (%RH) 60…70 Adults: 
25…99 

Joly and Nikiema (2019), Tomberlin and Sheppard (2002), Gobbi 
(2012), Holmes et al. (2012) 

Temperature (°C) 27…31 
 

15…36 
 

Chia et al. (2018), Sheppard et al. (2002), Tomberlin et al. (2009) 
Booth and Sheppard (1984), Holmes (2010), Holmes et al. (2016), 

Sheppard et al. (1994), Tomberlin et al. (2009), Holmes et al. (2012) 

Substate    

Feeding rate (dry 
base) 

95…163 mg/larva/day  Parra Paz et al. (2015), Diener et al. (2009a) 

Moisture content 
(%) 

52…70 40…90, 
avoid free 

water 

Cammack and Tomberlin (2017), Cheng et al. (2017), Dortmans et al. 
(2017), Lohri et al. (2017), Sheppard et al. (2002), Tomberlin et al. 

(2009), Fatchurochim et al. (1989), Furman et al. (1959), Tomberlin et 
al. (2002) 

pH 6.5…8 
 

4…9 Caruso et al. (2013), Dortmans (2015), Lalander et al. (2015), Rehman 
et al. (2017a, 2017b) 

Salinity (%) < 1 <4 Cho et al. (2020), Kwon and Kim (2016) 

Particle size <2 cm Not 
established 

Dortmans et al. (2017), Lohri et al. (2017) 

Structure Sufficient structure to allow the larvae to move 
through the feedstock, consume it and breathe 

 Barry (2004), Perednia (2016) 

Nutrient content Feedstock rich in protein and carbohydrates (e.g., 21% 
protein and 21% carbohydrate); Suitable C/N ratio: 

10–40 (optimal nutrient balance not established). High 
contents of volatile solids are preferable 

Not 
established 

St-Hilaire et al. (2007a), Gobbi et al. (2013), Lalander et al. (2015), 
Cammack and Tomberlin (2017), Dortmans et al. (2017), Lohri et al. 

(2017), Rehman et al. (2017a, 2017b), Lalander et al. (2018) 

Fiber content Not established Not too high Zheng et al. (2012a), Caruso et al. (2013), Lohri et al. (2017), Mohd-
Noor et al. (2017), Rehman et al. (2017a) 
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2.2.4 Prepupa and pupa stage 
The stage between larva and pupa stage is the "prepupa" stage (7 days) wherein they cease to eat and 

empty their guts, while their mouth parts change to an appendage that aids climbing (Sheppard et al., 

1994). Under laboratory conditions, the larvae reach this stage in two weeks at 30 °C (Furman et al., 

1959). Pre-pupae (black, 15–20 mm) crawl out of the moist feed source to search for a humid sheltered 

area to pupate. By using a specially designed bioreactor, the typical migrating behavior of prepupae 

can be exploited, allowing self-harvesting of prepupae (Sheppard et al., 1994). They are often a bit 

larger than the mature pupae stage (Newton et al., 2005; Georgescu et al., 2020). 

The pupation stage of BSF lasts about two weeks or longer depending on the substrate (Tomberlin et 

al., 2002) and the environmental conditions (Tomberlin et al., 2009; Holmes 2010). The exoskeleton 

darkens in pigmentation and a pupa develops inside of the exoskeleton (Kaleka et al., 2019). No 

specific material is necessary for pupation. Holmes et al. (2012) demonstrated that H. illucens reared 

at 70% RH with no pupation substrate has 93% emergence success. However, the use of pupation 

material is recommended as it can protect the pupa from desiccation (Holmes et al., 2013). While the 

prepupa tolerates cool temperatures (16–18 °C), the advanced pupa is more sensitive to cold. When 

using cool to slow development, the environmental data might have a predictive value, but otherwise 

the sensing is done more to maintain benign optimal conditions and to follow moisture. 

2.2.5 Adult stage 
Adults (flies) emerge after 10–14 d after pupation at 27–30°C (Sheppard et al., 2002). Males typically 

emerge first, whilst females follow about 2 days later (Tomberlin et al., 2002). The flies (length 15–20 

mm) have a life span of 5 to 14 days (Tomberlin et al., 2002; Ussery 2009). Adults live solely to mate 

and lay eggs (Sheppard et al., 2002), thus they do not have full functioning digestive track for eating, 

though they can drink. Adults rely on fat body as energy reserves, which were stored during the larval 

stages. These reserves are visible also to other flies through the abdominal “window” and influence 

adult fitness and longevity (Liu et al., 2008; Tomberlin et al., 2002). Even if adults do not feed, their 

longevity is increased when provided with a source of water (Tomberlin et al., 2002; Caruso et al., 

2013), and simple dissolved carbohydrates (Rachmawati et al., 2010; Nakamura et al., 2016). 

Adult flies typically mate and oviposit at temperatures from 24 °C to 40 °C, even if in the field 99.6% 

of oviposition occur between 27.5 and 37.5 °C (Booth and Sheppard, 1984). According to Chia et al. 

(2018), fecundity is significantly affected by temperature, especially at temperature below 15˚C and 

above (37˚C) survival thresholds. The highest fecundity of H. illucens was observed at 30˚C (Chia et al., 

2018). Temperatures below 27°C result in reduced adult activity, and consequent lower mating pairs and 

oviposition rates (Tomberlin and Sheppard, 2002). Adult life span and pupal development time 

decrease when temperature is higher than the optimal range of 26–27 ˚C (Barragán-Fonseca et al., 

2017; Shumo et al., 2019). High humidity is also associated with longevity, as adult H. illucens live 2–3 

d longer at 70% RH than at lower (25 and 40%) RH levels (Holmes et al., 2012). 

The adult lekking behavior is critical for mating (Tomberlin and Sheppard, 2001). In this regard, adults 

are known to form aggregation sites where males attempt to secure a female in flight and mate with 

her. As consequence, colonies are to be maintained in cages to promote mating (Dortmans et al., 

2017; Yang 2017). Adults typically mate for two days after emergence (Tomberlin and Sheppard 2002). 

Mating can be achieved if a BSF male intercepts a passing female in mid-air, and if they descend in 

copula (Tomberlin and Sheppard, 2001). The mating environment is the most demanding to create 

and suboptimal temperature, moisture, light intensity, and L:D cycle and deviations from the optimal 

conditions is quickly observed in behavior and success rates, which together with the environmental 

characteristics require close monitoring.  
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2.3 Monitoring product quality and risk assessment 
The substrate or equipment contamination during the farming could increase microbial risks, 

because BSF are farmed in moist warm environment in microbe-rich medium. Though black soldier 

fly larvae are less affected by infection to several potentially pathogenic bacteria such as 

Salmonella spp. (Erickson et al., 2004; Lalander et al., 2013) and Escherichia coli compared to other 

farmed species (Erickson et al., 2004; Liu et al., 2008; Vogel et al., 2018), pathogen monitoring and 

hygienic treatments are recommended. In addition to microbes (Boccazzi et al., 2017), unwanted 

pest insects need to be controlled (Reguzzi et al., 2021). These might be detected as deviations 

from derived performance, but generally automatic detection with precise diagnostics is 

challenging. 

Chemical contamination might impact product quality or safety. There are reports indicating that 

heavy metals might accumulate in the exoskeleton of prepupae (Diener et al., 2015; Bulak et al., 

2018). Regarding toxic feed contaminants, Diener (2010) found cadmium, lead, and zinc in BSF 

prepupae fed on organic waste. None of the three heavy metals had significant effects on life cycle 

traits (prepupal weight, development time, sex ratio) nor on the bilateral symmetry of the adult 

flies. However, cadmium accumulated in the prepupae and could thereby potentially limit its use 

in the production of animal feed. Diener (2010) also concluded that neither lead nor zinc 

accumulate in larvae or prepupae, which means concerns about the use of prepupae in animal 

feed might be less critical. Nonetheless, when proteins and lipids are extracted, heavy metals may 

be discarded as they remain in the chitinous exoskeleton. These contaminants have low 

concentrations and have insignificant impact on BSF performance, and therefore may need to be 

analyzed separately. 

The main by-product in the BSF production is frass. Frass is mixture of insect faeces, substrate 

residues, and shed exoskeletons (Cadinu et al., 2020). It is an inevitable side-stream during the 

mass-rearing of insects that can add up to 75% of the fed substrate (Diener et al., 2009b) and is 

often merchandised as a fertilizing product (Schmitt and de Vries 2020). Many studies have focused 

on meaningful applications of insect frass (Choi et al., 2009; Alattar et al., 2016; Vickerson et al., 

2017; Sarpong et al., 2019; Quilliam et al., 2020; Klammsteiner et al., 2020a). Field studies have 

provided promising perspectives for its application in agriculture, especially in terms of plant 

nutrient availability (Beesigamukama et al., 2020a, 2020b, 2020c). The substrate used to grow 

insects affects the properties of the frass, since undegradable residues remain unused, while the 

digested fraction is modified by the gut microbiota when passing through the gastrointestinal tract 

(Klammsteiner et al., 2020b). 

2.4 Benefits of measurement technology and data  
The principles of the development stages of the BSF and the main features of optimal breeding 

conditions are well known. However, the literature review clearly shows that there may be variations 

in growing conditions, and it is evident all details related to breeding are not yet unequivocally known. 

Better management of these conditions and their variation through measurement technology may 

bring great benefits for optimizing the partially or wholly automated production of BSF.  

The measurement technology makes it possible to gain greater awareness of the state of the 

production process currently underway. In such a case of use, the basic purpose of the measurement 

is to ensure conditions about the main factors such as temperature and humidity, and if deviations 
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exist, corresponding interventions are done. It can be inferred from the literature reviews that there 

is a need for accurate and large-scale measurement technology if production is to be carried out in a 

wide and automated form. Although the process of breeding BSF is quite well known in principle, it is, 

on a closer inspection - with its all substrates and all stages of development - highly complex. In 

addition to "basic variables" such as temperature and humidity, measuring other properties of the 

growing environment, such as carbon dioxide or ammonia content (the meaning of which is differently 

reflected in the literature), can be particularly useful in some situations.  

Improving the efficiency of the production process by interventions and control techniques 

implemented by measurement technology, is a particularly interesting topic. If the application of 

measurement technology at different stages of the growing process is effortless and the measured 

data is easy to routinely record, the data collected cumulatively from different breeding batches may 

enable systematic and even algorithmic identifications of the optimal growth processes based on the 

data collected. In the simplest form, this may be an ordinary quality control and review by experts 

about the correspondence between breeding conditions and the result of production. The 

measurements data may include answer for the question what were the essential characteristics of 

the measurement results during the breeding of the high-quality and large-yield production result? 

Further, a particularly interesting perspective about the possible benefits of measurement technology 

in optimizing the production process is if the measurement technology could be used simultaneously 

during breeding to observe both growth conditions and growth results. In the most active stages, the 

growth process with its physical phenomena is very fast – at best, the larvae grow almost with a speed 

possible to see by the eyes. Measuring growth conditions in terms of temperature, humidity and the 

like properties is straightforward, but measuring corresponding growth results is naturally more 

difficult, but may still be somehow possible by applying, for example, artificial intelligence supported 

camera technology. Several strategies to measure the growth of insects in real time exist and the 

corresponding methods are evolving rapidly. If it would be possible to achieve detailed and reliable 

real-time information about the growth result during the breeding process, this may lead to big leaps 

in the optimization of breeding processes in BSF production.  

BSF development process under typical conditions is quite predictable. The first task of sensing is the 

detection of deviations requiring an intervention. This can be based on outlier detection methods. 

Many recorded parameters vary over time and might have relatively large measuring error (Parodi et 

al., 2020, Pang et al., 2021) and therefore anomaly detection is likely to benefit from process 

modelling. The second task is to predict the development stage particularly for the larva, where the 

environment has more inherent variation due to feedback loops and precise timing has impact on 

product quality. Larvae are ready to be harvested after 10–12 days, before they turn into prepupae. 

At this stage, the larvae have reached their maximum weight, but have not yet transformed into 

prepupae and their nutritional value is at its maximum. Harvesting is the process in which the larvae 

are separated from the residue, e.g., by a shaking or drum sieve (Popoff and Maquart, 2016; Cheng et 

al., 2017; Dortmans et al., 2017) followed by blanching or other kill method (Erens et al., 2012) and 

other processing (Larouche, 2019). and with prediction and environment adjustment product quality 

and equipment use load can be optimized.  

Table 4 provides some information on the costs of BSF production. Sensing and automation can 

influence the economics of insect rearing in different ways. On one hand, sensing can help to increase 

production performance and viability of insects and on the other hand, automation can save work and 

enable the management of larger quantities of insects. Because feed and energy can be major 

components of production costs of BSF (for example, Ites et al. (2020) identified feed at the main cost 

component), it is essential that the insects use the feed efficiently and achieve a high feed conversion 
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efficiency. Information on feed qualities such as nutritional content, moisture and pH can therefore 

provide valuable information on the success of BSF rearing. In addition, the weight of the crate at 

different points in time and environmental parameters such as the temperature of substrate are 

essential because they can provide indirect information about the growth of a batch. Temperature 

can also help in optimising the timing of harvesting, because the optimal harvesting is likely soon after 

the temperature of the substrate and the batch is starting to decrease. Other economically important 

parameters to be monitored include for example larval survival rate.  

Table4 4. Prices of H. Illucens larvae (fresh weight) and operational costs of rearing as presented in scientific literature (table 
modified from Niyonsaba et al., 2021). 

Country Price, €/t fresh Larvae 
type 

Operational cost, 
€/t dried larvae1 

Reference 

Egypt 427 Meal na Abdel-Tawwab et al. 
(2020) 

Kenya 464 Meal na Chia et al. (2019) 

Germany 6,500-18,190 Pet food, 
dried 

3777 Ites et al. (2020) 

Spain 2,273-5,091 Meal na Llagostera et al. (2019) 

Italy 2,000/2,500 Meal/dried na Mancuso et al. (2019) 

Germany 1,816 Dried 1452 Pleissner and Smetana 
(2020) 

the 
Netherlands 

2,000-3,000 Fresh na Hilkens et al. (2016) 

1 Operational costs may include: feed, water, electricity, labour, gas 

2.5 Concluding remarks  
BSF development process under typical conditions is quite predictable even if the duration of the 

process varies substantially depending on environmental parameters sch as temperature. Many 

recorded parameters vary over time and might have relatively large measuring error and therefore 

anomaly detection is likely to benefit from process modelling.  

BSF are generally monitored at container or population level rather than individual level. Important 

parameters to be monitored include temperature, humidity, air pressure, (bio)chemical and gases can 

be used to maintain a benign environment and substrate condition. Some insects’ parameters can 

show substantial variation. For example, the coefficient of variation for prepupa and pupa 

developmental time, prepupal weight, waste reduction index or feed conversion ratio is around 40% 

or higher (Table 1). Hence, if high negative changes are measured in these parameters, they provide 

guidance on how to enhance the biological production process. The monitoring is expected to observe 

environmental deviations that are compromising a successful production process as well as to forecast 

the progress of insect rearing as a process. Additional information on substrate quality such as 

nutritional content and pH can also provide valuable information on the success of BSF rearing. Many 

environmental parameters, especially temperature and humidity, by contrast can vary by just 5-10% 

from the desired value without the production performance being impaired (see Table 3 for details). 

Small deviations in the key environmental parameters can result is substantial changes in some key 

performance indications of insects. 

An additional factor that needs to be taken into account is that the rearing conditions vary by 

development stage of BSF and the fly stages have biological unique needs. Therefore, diverse sensing 

approaches are needed to evaluate the performances of BSF. Besides basic environmental 

information, more advanced technologies can also be utilized. For example, machine vision and other 
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imaging technologies can be used to monitor different features such as hatching and oviposition 

performance as female activity, the number, activity and condition of neonate larvae, prepupae, 

pupae and adults, egg mortality and the condition of substrate. Motion that can be measured by 

monitoring the batch (e.g. crate) can provide information on activity and the status of insect 

population, whereas changes in the weight of the batch and the substrate can provide indications on 

the growth of insects and their mortality. 
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3 House cricket (Acheta domesticus)  

3.1 Bio-physical information on the rearing process 

3.1.1 Basic information 
Crickets are widely used as food in the world and have also been reared on an industrial scale in 

Western countries for decades to feed for domestic animals (Ortiz et al., 2016). There are 900 species 

of crickets (van Huis, 2013). The house cricket can be considered one of the most promising novel 

foods in Europe, as it is an indigenous species in many European countries.  

The nutrition and the rearing environments of house crickets is to some extent different from two 

other species considered in this deliverable. Therefore, obtaining specific knowledge on the desirable 

feeding and rearing conditions per insect species (and developmental stage) is important, because 

once the impact of each change in environmental or some other parameter on the insect rearing 

process (such as the weight and growth rate) is known, the insect production process can be modelled 

and optimized, and risks that may threaten the production while delivering quality cricket produce 

consistently can be controlled.  

3.1.2 Life cycle 
Crickets (Orthoptera) undergo incomplete metamorphosis with three distinct stages egg, nymph, and 

adult. Eggs hatch approximately 13 days after laying. Cricket metamorphosis is hemimetabolous, 

involving molting through 7 to 9 instars prior to reaching maturity. The amount of time spent within 

an instar is significantly influenced by temperature, humidity, and diet quality. The development from 

egg to adult takes about 45–60 days (6–9 weeks) (Clifford and Woodring, 1990; Finke and Oonincx, 

2014; Hanboonsong and Durst, 2014; Cloutier, 2015). Except the egg stage, all stages occur in open 

air. Therefore, monitoring differs from black soldier fly. Four observations per hour is sufficient for 

monitoring these open-air stages, when alarms for deleterious extreme conditions are additionally 

set. The monitoring can mainly be based on ambient environment or remote sensing Figure 3. 

However, the production system’s details might vary greatly from system to system and influence the 

recommended monitoring options. Crate groups might also be mixed at larval stage or in the mating 

stage, which makes detailed group ancestry documentation challenging. 

3.1.3 Incubating and nursery period (0 to 14 days old) 
The egg bowl is kept in an incubator with a temperature above 30 °C (Hanboonsong et al., 2013; 

Clifford et al., 1977). Eggs are white, thin and less than 1 mm long and hatch after 7 to 14 days if the 

temperature is steady and optimal (Hanboonsong et al., 2013; Clifford et al., 1977). The incubation 

time depends on the conditions (temperature and humidity). At room temperature incubation time is 

very long, but it decreases as the temperature increases (Table 5). When the first hatched crickets 

(pinheads) appear, they are initially as large as crickets’ eggs. Pinheads are raised in the same way as 

older crickets, but they require higher humidity and temperature and fine, soft feed, which is high in 

protein (Hanboonsong and Durst, 2020).  

Batches of first instars are separated to start new rearing units. The number of first instar per batch is 

estimated by volume (34 mL is equivalent to between 10,000 and 12,000 first instars). The number of 

first instars can also be estimated by weight. The mean weight of a first instar is approximately 500 

µg, so 2000 first instars weigh approximately 1 g (Ortiz et al., 2016). 
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The environment is non-liquid (gases, solid trays) and dark and the air is ventilated and circulated for 

homogenous conditions. However, heat and moisture may form a gradient from bottom to top and 

gas exchange can be less pronounced in the middle of the nymph tray. The youngest nymphs are often 

on top trays, and they descend to lower trays over time. One or two sets of ambient recording sensors 

(temperature, moisture, CO2, possibly light) per chamber is enough to monitor for malfunctioning 

equipment. Otherwise, the condition distribution is a matter of incubation chamber design matter. 

3.1.4 From 15 days of age until maturity 
Nymphs undergo several molts before they reach adulthood. The number of molts varies from about 

6 to 12 depending on the conditions (Nix and Bass, 1973; Patton 1978; Clifford and Woodring, 1990). 

According to Woodring et al. (1977), the maximum growth rate occurs in the first half of the 7th and 

8th larval instars of the house cricket, at what time food and water consumption is maximal. Growth 

ceases in the last 2 to 3 days of each instar when food consumption is almost nil. On the other hand, 

the metabolic rate is twice and the locomotory activity is four times higher in the first 2–3 days than 

in the last 2–3 days of each instar. The percentage gain in dry weight is 120% for the 7th and 139% for 

the 8th instar (Woodring et al., 1977). Cyclic variation in crickets’ growth, feeding and drinking 

intensity according to molting stage and exponential growth of the last two larval stages of instars aids 

in monitoring the growth of crickets and determining the optimal ending time for cricket rearing, 

which is important factor for fully automated cricket farming systems (Entocube, 2021). 

The environment of crickets is non-liquid (gases and solid items and potentially feed or frass traces) 

and follows a daylike L:D cycle and includes various obstacles (equipment and stimulating interior 

tiers) for visual monitoring (see Table 5). Heat, moisture, gases, and light might form gradients in the 

greater room, within the crates and around the tiers forming subspaces within the crate. Sensing 

solutions might vary between systems as some systems use small, closed and fully controlled crates, 

some midsized open or semi-closed crates and some crates are more pen type environments. For 

smaller crates one set of ambient sensors (temperature and moisture, potentially gases and light) is 

sufficient monitoring, while for pen type crates might benefit more from a wide spectrum camera 

surveillance. Insect activity can provide a proxy for environmental monitoring, and this can be done 

either by monitoring the placings and movements of crickets, or by detecting sounds or vibration 

levels and modeling their distribution in 3D. The latter methods require environment specific 

standards, while for physical direct measurements beneficial conditions are more clearly defined (see 

later). Observing the presence of dead insects requires movement tracking and may cover only parts 

of the crate, due to visual barriers. In addition, food and liquid use should be monitored and may be 

used to inform about animal activity, but the technical solutions depend on the exact equipment used. 

Generally, time series data is either beneficial or required depending on the trait (e.g., L:D –cycle, but 

also heat for monitoring the extent of heat stress requires a time series). Time series data are required 

to understand the lot’s progress. 

3.1.5 Adults  
Adult crickets are identified by fully developed wings and chirping. The adult house cricket is about 

2.5 cm long, light brown and has a black stripe between the eyes. Cricket bodies have three distinct 

segments: the head, the thorax, and the abdomen. They also have three pairs of legs and two 

antennae (Orinda et al., 2020). The male is slightly smaller, and the female is easily recognized by the 

presence of an ovipositor (Cloutier, 2015). 
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Like other cricket species, mating of crickets relies on acoustic signals. Males make chirping sounds by 

rubbing their wings over each other (Huber, 1962). Each species has its own chirp and chirping is 

temperature dependent. Crickets chirp faster with increasing temperature (Walker, 1962). Female 

choice depends on the characteristics of the male signals, which reflect male quality (Nelson and 

Nolen, 1997). Males are ready to mate 2–3 days after adult emergence and become more effective 

with experience (Clifford and Woodring, 1990). Only mated females lay eggs and mating usually occurs 

two days after adult emergence.  

Females will only oviposit if suitable oviposition media is available. One or more laying bowls with a 

layer of clean, moist, soft, porous material (about 3–5 cm deep) are placed in the rearing container to 

encourage egg laying (Cloutier, 2015). Oviposition media can contain mixed rice husks and sand 

(Hanboonsong et al., 2013), mixture of sand and clay, potting soil, coconut fiber, cotton wool and 

peatmoss or other material that absorbs moisture (Clifford and Woodring, 1990; Cloutier, 2015). 

Vermiculite can be added to the material to avoid excessive moisture (Patton, 1978). The laying bowl 

is replaced and transferred to the warm container (hatching incubator) for every 24–72 hours 

(Hanboonsong et al., 2013; Patton, 1978). New laying bowls are placed to the rearing container 

immediately or after few days.  

The egg laying period begins on day 9 after reaching the adulthood and can last through 60 days, 

although peak in production occurs about day 15, with some females laying up to 200 eggs in one day 

(at 30°C) (Clifford and Woodring, 1986, 1990). In Thailand laying period lasts 7–14 days and 

reproduction cycle can be repeated one to three times for each generation (Hanboonsong et al., 

2013). Eggs can be collected for use in the farm for many cycles, but consideration must be given to 

avoiding inbreeding within the colony (Hanboonsong et al., 2013; Hanboonsong and Durst, 2020). 

Adult lifespan lasts about 70 days (Clifford and Woodring, 1990). Crickets are active at night and during 

the day they hide in warm and dark places (Cloutier, 2015). 

The environment is similar to the previous stage with two exceptions: adults chirp and egg laying 

requires specific oviposition places. Moreover, the mature animals, particularly the males, might be 

more sensitive to high animal density or requite more internal tiers for reduced stress. In addition to 

monitoring prolificacy, chirping activity can be monitored. Oviposition places are changed frequently 

and are unlikely to require monitoring for moisture. Their usage level is an indicator of breeding 

success and offer an option for visual monitoring. Otherwise, the general monitoring considerations 

are like in the previous stage.  
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T=temperature, RH=relative humidity, H2O=moisture, D:L=Dark:light cycle, L. = light, A=audio, V=visual, CO2=carbon dioxide, 

dm= dry mass, ovi.=oviposition. 

Figure33. Simplified flowchart sketching time-stamped sensing and tracking data that can be used for quality assurance and 
improvement for the biological house cricket production process. Technical flow chart is presented in D2.2 Figure 13. 

 

3.1.6 Rearing conditions 
Rearing conditions are expected to simulate the natural environments from which target insects are 

derived. Also breeding devices must be used which are especially adapted to the habits and character 

of the insects to be reared (Cohen, 2018). Rearing facilities should provide suitable conditions to allow 

insects to perform the reproductive functions that allow them to sustain continuous generations of 

offspring. These conditions include mating accommodations, suitable oviposition circumstances, and 

appropriate hatching and developmental requirements (Cohen, 2018).  

Optimizing rearing conditions for house crickets increases the production efficiency and improves the 

well-being of the animals. Rearing conditions such as temperature, light-dark cycle, humidity, and 

available space influence the insect development (Fernandez-Cassi et al., 2019). Unfavorable 

conditions can slow down development, promote abnormal behavior or increase insects’ mortality 

rate (Clifford et al., 1977; Tennis et al., 1977; Clifford and Woodring, 1990; Parajulee et al., 1993). 
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3.1.7 Temperature 
Temperature is arguably the most important abiotic factor influencing the biology of insects. Because 

insects are poikilothermic and the body temperature changes with the ambient environmental 

temperatures, changes in ambient temperature can have substantial effect on the insect metabolism. 

House crickets originate from warm climate and accordingly develop fastest in relatively high 

temperatures (Table 5). Whilst crickets can survive temporary fluctuations in temperature, the eggs 

are less tolerant and require relatively consistent temperatures (Kvassay, 2014). 

The influence temperature has on patterns of growth and development of insects has been 

particularly well studied and modelled (Booth and Kiddell, 2007; Wagner et al., 1984; Liu et al., 1995; 

Mirhosseini et al., 2017; Rebaudo and Rabhi, 2018). The optimal rearing temperature for growing for 

house cricket is about 29–35 °C (Table 5). Although growth rates are increased by higher 

temperatures, adult size generally seems to decrease, a colder environment results in larger animals. 

According to Morales-Ramos et al. (2018), house cricket at 27 °C produced more biomass and adults 

were significantly larger than those developing at 29 °C. The optimal age to harvest based on food 

consumption and cricket biomass gain ratios was at the end of 8 weeks at 27 °C and at the end of 6 

weeks at 29 °C (Morales-Ramos et al., 2018).  

In the study of Roe et al. (1980) the dry weight gain, total oxygen consumption, total food 

consumption, total water consumption, and several growth indices were not statistically different 

between the rearing temperatures of 30 and 35 °C. It is important to recognize that only temperatures 

above 35 °C (38–41 °C) cause near 100 % mortality (Ghouri and McFarlane, 1958). Heat generation 

inside the rearing container is an important issue as overheating can cause disease outbreaks and high 

death rates among the crickets (Hanboonsong and Durst, 2020).  
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Table5 5. The desirable range of parameter values for A. domesticus. 

Parameters Range of favorable rearing conditions Further notice References 
Rearing density 

  
  

Minimum crawl space of 2.5 cm2/cricket, 4–7 
nymphs/dm2. 

Overcrowding may drastically affect 
the life cycle duration and 
physiological parameters. 

Patton (1978), Clifford et al. (1977), Ortiz et al. (2016), 
Tennis et al. (1977). 

Light, 
photoperiod  

Nocturnal, adults have circadian rhythm in 
locomotor activity, feeding activity and oxygen 
consumption. Cycles of 12:12 and 14:10 L:D are 

recommended. 

Continuous light interferes 
copulation. 

Clifford et al. (1977), Clifford and Woodring (1990), 
Cohen (2015), Cymborowski (1973), Ghouri and 

McFarlane (1958), Górska-Andrzejak and Wojtusiak 
(2003), Nowosielski and Patton (1963), Oonincx et al. 

(2010), Woodring and Clifford (1986). 
Temperature 

(°C) 
  
  
  
  

Optimum 30 or 28–35 ± 0.5 °C. Incubation lasts 13 
days at 30.5 °C, 14 days at 29,5°C, 16 days at 28 °C 

and 46–51 days at 23°C. All nymphal stages take 6–8 
weeks at 32 °C. Last nymphal stage at 25 °C lasts 12–
14 days, at 29.5°C 9 days, at 30.5 °C 8 days and at 35 

°C 5–6 days. 

Temperatures only slightly above 35 
°C (38-41 °C) cause near 100% 

mortality. Eggs require relatively 
consistent temperatures. 

Attard (2013), Booth and Kiddell (2007), Busvine 
(1955), Clifford et al. (1977), Clifford and Woodring 

(1990), Finke and Oonincx (2014), Douan et al. 
(2020), Ghouri and McFarlane (1958), Kvassay 

(2014), Lachenicht et al. (2010), Lundy and Parrella 
(2015), Morales-Ramos et al. (2018), Patton (1978), 
Roe et al. (1980, 1985), Tregenza and Wedell (1997).  

Humidity (% RH)  Incubating 90–100%, nursery period 70–80%, from 
15 days on and for an adult 50–55% or 20–40%. 

High humidity may be detrimental to 
later instars (older than the 4th) and 

adults.  

Attard (2013), Clifford et al. (1977), Clifford and 
Woodring (1990), Ghouri and McFarlane (1958), Roe 

et al. (1980). 
Growth Pinhead, first instar/nymphal stage ≤0.32 cm, adult, 

mature 2.5 cm. The optimal age to harvest based on 
food consumption and biomass gain ratios was at 

the end of 8 weeks at 27 °C and at the end of 6 
weeks at 29 °C. At 27 °C adults were significantly 

larger than at 29 °C. 

  Attard (2013), Morales-Ramos et al. (2018). 

Mortality  Low < 6%, normal 10-20 %, high mortality >78 %. ‘Mating effect’ and a ‘group effect’, 
can affect the longevity patterns. 

Collavo et al. (2005), Ghouri and McFarlane (1958), 
Morales-Ramos et al. (2018), Nowosielski and Patton 
(1965), Oonincx et al. (2015), Sorjonen et al. (2019), 

Vaga et al. (2021), von Hackewitz (2020). 
Feed        

Feed intake  At 27 °C 5.5–321 and at 29 °C 6.7–266 mg dry-weight 
consumed/cricket/week from week 1 to 10. Adult 

female 70–86 mg/day (mated), 14–78 mg/day 
(virgin). 

The mean amount of feed consumed 
by an adult at 30°C was 34 mg feed 
per day during the first 10 days of 
maturity. Nymphs consumed 16 to 

Clifford and Woodring (1990), Morales-Ramos et al. 
(2018). 
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28 mg/d throughout the penultimate 
and last instar, respectively. 

Particle size 
  
  

Optimal particle size is comparable to crickets' size 
(≤ 1 mm dia, size from 0.212 to 1.0mm), hammer 

mill, 2mm mesh size. Finely ground feed for nympfs. 

  Attard (2013), Cohen (2015), Finke et al. (2005), 
Straub et al. (2019), Tennis et al. (1979). 

Feed 
composition  

      

Macronutrients  Optimal feed contains 20–30% protein, 32–47% 
carbohydrates, and 3.2–5.2% fat. In the first 14-day 

period high-protein content is preferable, from 15 to 
30 day protein content can be reduced to 14 %. 

Commercial feeds typically have 14 
to 21 % crude protein content. 

Córdoba-Aguilar et al. (2016), Patton (1967), 
McFarlane (1964), Nakagaki and DeFoliart (1991), 

Neville et al. (1961), Hanboonsong and Durst (2020), 
Bawa et al. (2020). 

Micronutrients  Thiamine (B1), pyridoxine (B6), nicotinic acid (B3), 
pantothenic acid (B5), choline and biotin (B7) are 

essential, the absence of riboflavin (B2), inositol (B8) 
or folic acid (B9) retard growth substantially. 

Vitamins C, E, K, sterol, manganese, some other 
minerals and trace elements. 

Vitamin C, sterols, manganese, 
vitamins B1, B5 are the most 

important. 

Ghouri and McFarlane (1958), Meikle (1964), 
McFarlane (1972abc, 1976a, 1978, 1991), McFarlane 
et al. (1959), Morales-Ramos et al. (2020), Neville et 

al. (1961), Ritchot (1960), Ritchot and McFarlane 
(1961), Visanuvimol and Bertram (2011). 
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3.1.8 Humidity 
Relative humidity has diverse effects on different physiological processes of insects such as 

desiccation, weight loss of eggs, young nymphs, and adults (Clifford et al., 1977; Holmes, 2010) and 

increased or decreased lifespan (Holmes, 2010; Tomberlin and Sheppard, 2002). Incubated eggs and 

young crickets need high humidity to survive as opposed to older crickets which require lower 

humidity (Clifford et al., 1977; Clifford and Woodring, 1990; Table 5). Humidity can be increased in the 

cages by spreading water-soaked sponge or wet sand at the bottom of the cage. 

3.1.9 Feed 
Acheta domesticus belong to the Orthoptera order, and they have mandible mouthparts to tear off 

feed plant material (Cloutier, 2015). The hardness of the feed granule and the particle size of the feed 

should be such as to suit the mouthparts and eating behavior of each insect species (Panizzi and Parra, 

2012). Crickets carry food particles on their body and mouthparts to the water if it is possible and they 

kick food out of the food dishes during feeding (Clifford and Woodring, 1990). Food consumption and 

growth occurs during the growth phase of the instar, which occurs between the molts (Ghouri and 

McFarlane, 1958; Woodring, 1983). Crickets begin feeding about 6 hours after molting and continue 

until mid-instar. After they reach mid instar phase and adequate size, they stop feeding and the 

moulting process begins (Woodring, 1983). 

According to Finke (2015), soluble supplements may be suspended in a liquid and sprayed on the 

insect diet. Both adult and nymph crickets can consume also gel cubes and liquids. Reduced intake of 

feed in crickets has been reported if access to light, shelter, or water is restricted (Livingston et al., 

2014). 

House cricket is omnivore, so it can eat a wide range of food sources, which can derive from animals 

and plants. In nature, house cricket eats leaves, seeds, fruits, and vegetables. In general, crickets prefer 

feed on plants, but they can eat other insects and even their own eggs if food or water is scarce or 

imbalanced (Cloutier, 2015; Simpson et al., 2006). To successfully farm crickets, feed should be close 

to their natural diet (Hanboonsong et al., 2013) and its optimal composition and particle size depends 

on the growth stage of the cricket (Table 5). Nonetheless, the house cricket has some preferences for 

certain ingredients over others, depending on available choices (Morales-Ramos et al., 2020). Intake 

of vitamin C, sterol, manganese, and vitamins B1 and B5 had the most significant impact on live 

biomass production.  

The use of plant-based by-products in diets for cricket mass-rearing is very encouraged, given that it 

represents an environmentally friendly feeding strategy (Oloo et al., 2020; Oonincx et al., 2015; 

Sorjonen et al., 2019; Straub et al., 2019). Weeds and agricultural by-products or flowering plants can 

also be used as feed (Miech, 2018; Morales-Ramos et al., 2020; Vaga et al., 2021). Small feed producer 

in Thailand combines rice bran with beer yeast (a waste product of beer factories), thus obtaining a 

high protein feed for crickets (Reverberi, 2020). On the other hand, municipal food waste, vegetable 

or green garden waste or manure used as feed can hamper growth or cause high mortality rate in 

crickets (Harsányi et al., 2020; Lundy and Parrella, 2015). 

Vegetables from the market or other sources might be contaminated by insecticides, so they should 

be washed thoroughly before being fed to crickets. Uneaten green vegetables should be removed 

from the rearing pens completely and replaced daily with fresh green plant material (Hanboonsong 

and Durst, 2020).  
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3.1.10  Water 
The need for water is affected by the age of the insect, the quality of the feed, the temperature, the 

state of health, the stress, and the salinity of the feed (Panizzi and Parra, 2012). Water must be daily 

provided to crickets to avoid dehydration and water stress, as metabolic water production is usually 

insufficient to balance losses (Addo-Bediako et al., 2001). Moderate water deprivation may drastically 

affect the life cycle duration and physiological parameters of the house cricket (Clifford et al., 1977; 

McCluney and Date, 2008). 

To reduce the chance of desiccation, fresh, free-standing water had to be always available to the 

crickets (Clifford et al., 1977; Cloutier 2015). Water dispensers used on cricket farms are usually 

adapted from the commercial self-feeding type used in the poultry industry. Water can be dispensed 

through PVC pipes with sealed ends to store the water. A slit cut along the length of the pipe holds a 

cloth ‘wick’ that draws water out of the pipe as the crickets consume it (Hanboonsong and Durst, 

2020). The number of water dispensers can be adjusted, with about one water dispenser per square 

meter of pen space (Hanboonsong and Durst, 2020).  

The water dispensers should have sponges, cotton wool, small stones, or cloth mats in the feeding 

tray during the early growth of the crickets to prevent the young crickets from drowning 

(Hanboonsong and Durst 2020). The cloth mats or sponges used with water feeders are very high-risk 

reservoirs of harmful microbes, so frequent replacement and cleaning is essential. The water source 

must be always filled, and water replaced at least every three days (Hanboonsong and Durst, 2020; 

Kinyuru and Kipkoech, 2018).  

Some cricket farmers use water crystals or polyacrylamide crystals as a water source (Kvassay, 2014; 

Morales-Ramos et al., 2020). Crickets can be provided with water also by spraying on the surfaces of 

the container (Cloutier, 2015). However, if too much water is sprayed, feed can become excessively 

damp and/or being contaminated by fungi and other microbes (Hanboonsong and Durst, 2020). 

Crickets may get water also from fresh food such as cabbage, cucumber, carrot, potato, salad, or fruit 

(Ortiz et al., 2016).  

3.1.11  Rearing containers 
A good container must serve the target insect’s needs, including thermal features, humidity 

accommodation, gas exchange, being hospitable to developmental and reproductive needs, and any 

other microhabitat factors inherent in the insect’s biology (Cohen, 2018). The rearing containers must 

meet the O2 and CO2 requirements of rearing insect species. Air must be circulated to avoid undesired 

air stratification, proliferation of fungi, bacteria or viruses, and the accumulation of CO2 and other 

dangerous gases that can have detrimental effects on the health of the insect colony and workers 

(Cadinu et al., 2020). The patterns of oxygen consumption measured by Booth and Kiddell (2007) were 

similar between 25 and 28 °C and reflected the growth patterns, as the first seven instars grew 

steadily, while a rapid increase in growth occurred during the last instar.  

The house cricket jumps, so the sidewalls of the container should be at least 40 cm high. Crickets 

cannot climb smooth surfaces such as glass, plastic, metal, or aluminum foil. Providing hideouts 

(blinds) within the container for crickets is essential, because blinds give the crickets protection, extra 

space, and comfortable habitat where they can grow and shed their exoskeletons during molting. 

Common practice is to use commercial cardboard egg cartons stacked together for the blind, but also 

toilet paper rolls, crumpled newspaper and cardboard box dividers can also be used (Cloutier 2015; 
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Hanboonsong and Durst ,2020). Feed is best provided to crickets in shallow trays or bowls. The feed 

trays or plates are usually placed on top of the cricket blinds (Ortiz et al., 2016; Hanboonsong and 

Durst 2020).  

3.1.12  Harvesting 
House crickets can be harvested as the final instar or as adults (Cloutier, 2015). Crickets are commonly 

harvested before they develop wings, thus as last instars. The first stage of harvesting involves the 

removal of feed trays and water sources from the rearing container. Crickets hide in the egg cartons, 

so the best way to collect adult crickets for harvesting is by tapping those cartons into a basin or bucket 

(Hanboonsong and Durst, 2020). In automated containers harvesting system includes semiautomated 

harvesting solutions (Entocube, 2021). Once harvested, it is recommended to cool the crickets by 

placing them in the freezer. Usually, crickets are killed by freezing at -20 °C for 48 h (Kinyuru and 

Kipkoech, 2018). Processing and packaging facilities should be separated from rearing facilities 

(Hanboonsong and Durst, 2020). 

3.2 Mathematical models and computer programs 
Model-driven support system (MDSS) is a useful tool to help insect farmers make economically 

sensible decisions (Power, 2002). The models use data on insects’ life cycle, ecology, bionomics, and 

performance on different substrates (Otieno et al., 2019). The data produced by printed sensors, 

robots and an automated DSS (humidity, temperature, light, O2 and CO2, NH3, vibration, sound, image, 

amount of feed and water consumed by crickets) can be integrated into the model (Baldini et al., 2022; 

Kaklauskas, 2015; Wenning et al., 2022). Models can provide recommendations to repetitive 

management problems based on fixed action rules and workflows. The program provides easily 

interpretable information for the insect farmer to help make the right decisions in managing insect 

rearing and assist in determining the time optimal rearing time. Adjusting production conditions 

optimal for each growth phase ensures insect well-being, best performance and of consistent quality 

cricket production, bringing the best economic output to the insect producer. 

Mathematical models describing the relationship between insect reproduction and external factors 

have been developed since the 1920s (Janisch, 1925; Kaufmann, 1932; Eubank et al., 1973; Sharpe 

and DeMichele, 1977). Janisch (1925) described the relationship between the developmental velocity 

(embryonic and larval) of an insect and environmental temperature with the help of a specific 

function. To better understand the effect of oscillating temperatures on insects, Kaufmann (1932) 

introduced the concept of summative temperatures, which is based on the product of developmental 

time and effective temperature (= environmental temperature ⎼ lower threshold temperature). An 

alternative to Kaufmann's concept is given by the mathematical technique of summative 

developmental rates (Ghouri and McFarlane, 1958; Eubank et al., 1973), which also considers the 

rising complexity of insect development under rapidly fluctuating temperatures. 

Insect growth modelling helps to obtain a better understanding of the life cycles of insects, which is 

very important for effective rearing of insects for food or feed. Sturm (2016a) introduced a simplified 

mathematical approach that describes the progression of larval growth in two hemimetabolous 

insects; Teleogryllus commodus and A. domesticus. The model is found on a distinction between 

hormonal growth rate and intrinsic growth rate, the latter of which includes the increase of larval size 

due to food consumption. In addition, any dependence of these growth rates on environmental 

temperature is considered. Evaluation of model validity was conducted by using experimental growth 

data that were determined for larvae of these two cricket species (Sturm, 2016a).  
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Sturm (2016b) introduced the computer program Cricktherm, which aids to evaluate effect of various 

environmental factors on the daily fecundity of A. domesticus. The model of this computer program 

allows estimating the influence of environmental temperature, photoperiod, food composition, and 

population density on female oviposition. Model validation was conducted by comparing hypothetical 

and experimental fecundity data obtained for different constant temperatures (20, 27 and 34 °C) 

(Sturm, 2016b). The model provides a useful concept that can act as a starting point for further 

modelling work.  

3.3 Emissions and frass 
The rearing of crickets as mini livestock is considered more eco-friendly because of their low emission 

of greenhouse gases, low water and feed intake, and the small land requirement for their production 

as compared to conventional livestock (van Huis et al., 2013; Oonincx et al., 2015; Orinda, 2018; Bawa 

et al., 2020). According to Oonincx et al. (2010) house crickets produce CO2 68.0 g, 0.00 g CH4, 0.1 mg 

N2O, and 5.4 mg NH3 per kilogram of bodymass per day. Per the kilogram of mass gain house crickets 

produce 0.0 g CH4, 5.3 mg N2O mg, 1.468 g CO2 and 142.0 mg NH3 in a day (28 °C, 70% RH). 

Moreover, crickets may be produced on locally available food substrates such as agro-byproducts and 

weeds (Miech et al., 2016; Orinda 2018; Magara et al., 2019). Low temperature industrial surplus heat 

is also suitable for cricket farming (Reyes-Lúa et al., 2021). In the northern regions, an old active 

disused mine may also operate as an ecological farming environment for crickets, taking advantage of 

the 28 °C geothermal heat (https://sifted.eu/articles/entocube-insect-farm-mine/). 

House cricket farming produces waste (frass), which contains cricket feces, uneaten food, dead 

crickets, and shed exoskeletons. Frass production by A. domesticus equals 33–35 % of the feed 

consumed (McFarlane and Distler, 1982; Halloran et al., 2017). Recycling the frass into a soil amending 

material can address the environmental risks and meet targets of the circular economy.  

Cricket frass is rich in plant nutrients and likely promptly used as a soil amendment. Halloran et al. 

(2017) reported that the frass of house cricket contained 2.27% N, 2.02% P, and 2.26% K. According 

to Bukari et al. (2021) N content of cricket frass is higher 3.73%. These elements are higher than those 

of chicken manure (Halloran et al., 2017). The results of the studies of Butnan and Duangpukdee 

(2021) and Bukari et al. (2021) show that cricket frass is a high-quality organic fertilizer for vegetable 

production. Cricket frass may enhance growth via increasing nutrient availability, alleviating elemental 

phytotoxicities, and promoting plant growth by hormone-like molecules (Butnan and Duangpukdee, 

2021). If frass is used as fertilizer, the accumulation of heavy metals (arsenic, lead, cadmium, 

antimony, mercury) to the frass should be analyzed (Bukari et al., 2021). 

3.4 Quality and risk profile  
The risk of contracting zoonotic diseases from some cricket species must also be taken into 

consideration (EFSA, 2015; Baiano 2020). The intestinal flora of crickets could be a predisposing agent 

for the growth of unwanted microorganisms (de Miranda et al., 2021). Klunder et al. (2012) evaluated 

the microbial content of fresh, processed, and stored edible house crickets. The results showed that 

various types of Enterobacteriaceae and sporulating bacteria can be identified and subsequently 

separated from raw crickets entering them most likely during contact with the soil (Reineke et al., 

2012). According to Inácio et al. (2021) starvation (0–48 h) is not an effective method for reducing 

microbial loads in edible crickets. 

https://sifted.eu/articles/entocube-insect-farm-mine/
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The study of Fernandez-Cassi et al. (2019) assesses general processing steps and the risk profile of A. 

domesticus reared in closed systems. According to this study, the main hazards are: 1) high total 

counts of aerobic bacteria, 2) presence of spore-forming bacteria post thermal processing, 3) 

accumulation of cadmium and other heavy metals and 4) a possible increase of allergenic reactions 

due to exposure to insects and insect derived products. Eating crickets can also cause allergies to those 

persons sensitive to insect chitins (EFSA, 2015). 

3.5 Costs and markets  
Table 6 summarizes operational production costs and selling prices of A. domesticus, reported in 

selected studies. The production costs of insects are often quite high because of high labour costs, as 

routine procedures such as feeding are carried out manually. For example, Wouters et al. (2019) 

presented a model where labor costs were 62% of the total production costs. According to Morales-

Ramos et al. (2018), house cricket reared at 27 °C resulted in a slightly higher profits per g of hatchling 

per year when compared to rearing at 29 °C (Morales-Ramos et al., 2018). 

The selling prices of house cricket products on the market vary greatly. An internet search performed 

in May and June 2022 indicated that some Asian suppliers can deliver wholesale quantities of A. 

domesticus meal at prices below three euros per kilogram fresh weight (price at the supplier). 

The costs of rearing house cricket include the costs of labor input, feed and fresh vegetables (if 

supplied), energy, water, materials and equipment, housing, logistics and various supplies. Labor input 

is a substantial cost in small-scale production. Techno-economic analysis conducted by using the 

costing calculation of Niemi et al. (2020) as a starting point suggests that if automation could reduce 

the use of labor input by 75%, as found by Wouters et al. (2019) for mealworm, the production costs 

per kilogram of house cricket could decrease by 38–55% (Figure 4). Besides feed conversion ratio, feed 

quality and feed price, other economically critical parameters which appropriate level must be 

ensured, include mortality, and temperature which can lead to substantial mortality if 35 °C, is 

exceeded. The incubation time efficiency and rearing efficiency during nursery period are also 

important parameters as they are influenced substantially by temperature, humidity, and diet quality.  

Table6 6. Prices of house cricket products and operational costs of rearing as presented in scientific literature (table modified 
from Niyonsaba et al., 2021; Niemi et al., 2020). 

Country Price, €/t Product 
type 

Operational 
cost, €/t dried 

larvae 

Reference 

Thailand 1,867-
3,952/26,363 

Fresh/Meal na Halloran et al. (2016) 

Thailand 2,018-2,950 Fresh na Halloran et al. (2017) 

Thailand 2,363-3,272 Fresh na Hanboonsong et al. (2013) 

USA 84,590 Meal 5,914 (feed) MoralesRamos et al. (2020) 

USA 30,000-36,346 Meal na Reverberi (2020) 

Canada 18,182 Meal na Reverberi (2020) 

Belgium 45,455 Dried na Reverberi (2020) 

The 
Netherlands 

200,000 Dried na Meuwissen (2011) 

China/Finland 6,000-38,000 Meal 30,000- 81,510* Niemi et al. (2020) 

*Includes the total production costs. na means information not available. 
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Figure44. Four scenarios describing the effect of automation, improved feed conversion ratio (FCR) and reduced mortality on 
the production costs of house cricket (scenarios derived by using the results of Niemi et al., 2020). 

 

3.6 Concluding remarks 
The nutrition and the rearing environments of house crickets is to some extent different from two 

other species considered in this deliverable. Key performance indicators for house cricket include 

parameters such as growth rate, feed conversion ratio and mortality. Because feed quality can have a 

major impact on these parameters, it is essential to have information also about feed’s nutritional 

content. Feed should contain sufficient amounts of amino acids, vitamin C, sterol, manganese, and 

vitamins B1 and B5, as these impact live biomass production. In addition to feed, house crickets must 

be supplied also water either as such or by using fresh vegetables. As the source of water can quickly 

be contaminated with molds or bacteria, its quality should be monitored daily, replenished regularly 

and not be supplied in large quantities. Because labor and fixed inputs are major inputs in terms of 

their contribution to the costs, some of the key factors to make the products more cost-competitive 

are to increase the growth rates, reduce mortality, and to increase the size and automation level of 

the facility. 

Similar to BSF, also house crickets’ production performance can vary substantially and fairly small 

deviations from the desirable rearing environment parameters can result is substantial changes on 

production performance. Optimizing rearing conditions for house crickets increases the production 

efficiency and improves the well-being of the animals. Rearing conditions are expected to simulate 

the natural environments from which target insects are derived Conditions such as temperature, light-

dark cycle, humidity, and available space influence the insect development. Temperature is the most 

important abiotic factor influencing the biology of insects. A few degrees too high or too low 

temperatures can already reduce the growth substantially. For house crickets, the temperature of the 

rearing environment should be very close to 29°C. High humidity can increase the risks of pathogen 
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infections, which may compromise the viability of cricket population. Rearing facilities should provide 

suitable conditions to allow insects to perform the reproductive functions that allow them to sustain 

continuous generations of offspring. These conditions include mating accommodations, suitable 

oviposition circumstances, and appropriate hatching and developmental requirements. Overall, 

modelling approaches has been found useful analyzing different practices that can be used to manage 

house cricket rearing process.  
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4 Mealworm (Tenebrio molitor (Coleoptera: Tenebrionidae)) 

4.1 Bio-physical information on the rearing process 

4.1.1 Basic information 
The mealworm T. molitor Linnaeus (Coleoptera: Tenebrionidae) (Figure 5) is one of the most promising 

insects reared at an industrial scale as novel food source for humans (Morales-Ramos et al., 2019). 

Mealworms are easy to rear under artificial conditions and are commonly fed with wheat bran with 

protein supplementation, while vegetables are provided as water source (Morales-Ramos et al., 2013). 

Mealworms are efficient in transforming diet substrate with a low nutritional value in rich protein 

biomass (Van Huis et al., 2013). Mealworms are suitable for human consumption and their nutritional 

value is comparable to that of beef and chicken (Li et al., 2013; Truzzi et al., 2019). However, diets and 

procedures used in small-scale rearing facilities barely meet the criteria for automated mass 

production at industrial levels (van Huis et al., 2013).  

Tenebrio molitor is a species belonging to the Tenebrionidae Family, commonly known as darkling 

beetles (adults) or mealworms (larvae). It undergoes a complete metamorphosis after four stages of 

development, namely egg, larvae, pupae, and adult (Figure 5). This cosmopolitan insect feeds primarily 

on farinaceous materials and is accordingly considered a pest in flour mills and barns (Ghaly and 

Alkoaik, 2009). A summary of the life cycle is presented in Table 7.  

4.1.2 Eggs  
The female lays an average of 400-500 eggs singly or in small clusters, attached to the substrate or the 

walls and floor of the containers where they are bred (Ghaly and Alkoaik, 2009; Selaledi et al., 2020). 

After a period varying between 4 days at 26-30 ºC and 34 days at 15 ºC, the larvae emerge from the 

eggs (Kim et al., 2015).  

4.1.3 Larvae 
The larval stage varies from 57 days in controlled conditions to 629 days in nature, even if the most 

common duration of this stage ranges from 112 to 203.3 days (Ghaly and Alkoaik, 2009). Shorter 

durations of the entire lifecycle of T. molitor have been reported by Spencer and Spencer (2006) and 

Hardouin and Mahoux (2003) with 75 and 90 days, respectively. During the larval stage, the larvae 

undergo several molts, varying from a minimum of 8 to a maximum of 23 (Ludwig, 1956), even if the 

most common number of instars ranges from 11 to 20 (Kim et al., 2015). 

4.1.4 Pupae 
After the larval stage, the larvae undergo a short period of latency and assume a “C” shape before 

turning into a pupa, after which metamorphosis takes place. The pupa stage takes from 6 to 20 days 

(Ghaly and Alkoaik, 2009; Hill, 2002; Selaledi et al., 2020). 

4.1.5 Adults 
Adults emerge as white beetles with a soft exoskeleton, which gradually darkens. Adults can start 

oviposition 3 days after emerging. The adult stage of T. molitor commonly lasts from 16 to 173 days, 

mostly from 31.8 to 62 days (Miryam et al., 2000). The highest reproductive output is however at 2 

and 3 weeks after emergence (Morales-Ramos et al., 2012). In nature, the entire life cycle takes place 

in the same ecosystem and the duration of the different stages is highly dependent on environmental 

conditions. Similarly, temperature, relative humidity, diet, population density and sex-ratio of the 

population can strongly influence the development and growth of T. molitor in rearing facilities (Ortiz 

et al., 2016, Zim et al., 2022, Jehan et al., 2020).  
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. 

 

Figure55. Life cycle of T. molitor. 

 

4.1.6 Rearing density and cycle management 
One of the main factors impacting the productivity of mealworm rearing system is the larval density. 

High densities may cause pupation inhibition, cannibalism, incomplete development and lower 

growth rates, likely due to competition (Weaver and McFarlane, 1990). High larval densities also affect 

the efficiency of digested food conversion and efficiency of ingested food conversion, overall 

comprising the yield of the rearing (Morales-Ramos and Rojas, 2015). Recently, Deruytter et al. (2022) 

studied larvae growth with five larval densities (0.5–8 larvae/cm3) and four feed heights (1–8 cm). 

They found that at low larvae densities, the substrate height was less important, with a slight 

preference for a thicker layer. In contrast, at high(er) larval densities, a lower layer thickness resulted 

in better growth. In addition, overcrowding have a relevant impact on mating, as single couples are 

the most productive in terms of progeny produced per female (Morales-Ramos et al., 2012). In their 

study, progeny per unit area increased to a maximum at a density of 14 adults/dm2 and then declined 

sharply. Wu et al. (2009) estimated desirable rearing density of adult mealworm to be as high as 1.18 

individuals per cm2 (Wu et al., 2009).  

Mealworm mass rearing is a new industry, and thus, genetic breeding of the species is currently at the 

outset. The leading breeding companies and mealworm producers are interested in developing strains 

with valuable agronomic traits, namely rapid growth, high fertility, effective feed conversion and 

disease resistance. Such a genetically uniform and bred strains are however not available yet, but 

utilizing the new tools of genetic research may take mealworm genetic breeding forward quickly. 

Currently, the new insect producers need to start with a small breeding stock and reproduce the 

colony in repeated cycles. Typically, a small batch of fully grown larvae are selected at harvest and 

allowed to complete the metamorphosis and form a new breeding colony. 

Cycle management requires farmer to make decisions on size of the breeding colony, and selection 

criteria. A successful decision making enables balanced cycle, but for sensible decisions the farmer 

needs information on reproduction capacity of the selected breeding colony and properties of 

available inputs, such as feed quality and how it affects larvae growth, feed conversion rate and 

survival. 

All live stages take place in dry environments, but only partially visibly on surface. Typically substrate, 

pieces of vegetables or other individuals cover a major share of the densely living population. 
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Therefore, visual monitoring can access only part of the brood, but this can be sufficient for observing 

progress by automated visual observations. However, this might be a biased sample. Tenebrios are 

handled more intensively than Black Soldier Flies or Crickets, and the repeating sieving process creates 

a natural data collection point by direct contact. In monitoring, four data points per hour is sufficient. 

Tenebrios are sensitive to some fungi, and moisture and fungal growth should be monitored closely. 

The monitoring is mainly based on ambient environment or remote sensing (Figure 6). However, the 

production system details might vary, and influence the monitoring options. Developmental rates vary 

in tenebrio, and insect groups might be mixed at various stages. Detailed group ancestry 

documentation as well as biological performance evaluation might be challenging, if this mixing is not 

controlled and documented. Table 7 summarizes some key parameters of T. molitor throughput its 

life cycle. 

 

 

T=temperature, RH=relative humidity, H2O=moisture, D:L=Dark:light cycle, L. = light, A=audio, V=visual, CO2=carbon dioxide. 

Figure66. Simplified flow chart sketching time-stamped sensing and tracking data that can be used for quality assurance and 
improvement in the biological mealworm production process. Technical flow chart is presented in D2.2 Figure 4. 
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Table7 7. Minimum, average, and maximum values of different life cycle parameters of T. molitor, as reported in different 

works. 

  Minimum Average Maximum 
Number of eggs  77 250 

280 
414 

400-500 

500 
576 

1000 

Length (mm) Larvae 20 
28 

16 
28 

25 
32 

 Adults 12 
15.5 

- 16 

Body mass (mg) Larvae 75 
130 
140 

111 
120 
126 
191 

160 
182.7 
190 
220 

 Adults - 136 - 

Duration (days) Complete life cycle 75 
90 

181 
280 

80-83.7 
189 
294 

90 
120 
196 
630 

 Egg stage 4 at 26-31 °C 
4-6 

5 at 35 °C 
7 

10 

7 
7.55 at 25 °C 

9.2 
12.6 at 20 °C 

15 

10 
12 
15 

19 at 18-21 °C 
34 at 15 °C 

 Larva stage 57 
87.7 

110.8 at 30 °C 

112 
120 at 25 °C 

151.15 

202.5 
216 
240 

Adapted from: Ribeiro, 2017. 

 

4.1.7 Rearing environment’s conditions 
4.1.7.1 Temperature 

To achieve a uniform batch of harvested larvae, mealworms are usually reared at a temperature of 

25-28 ºC (Ghaly and Alkoaik, 2009; Kim et al., 2015; Koo et al., 2013; Selaledi et al., 2020). In general, 

temperatures for insect development range from 10 °C (lower threshold) to 35°C (upper threshold) 

(Punzo and Mutchmor, 1980), while development in T. molitor occurs between 17 ºC (Koo et al., 2013) 

and 30 ºC (Koo et al., 2013; Ludwig, 1956). In this regard, the number of larval instars is higher and 

the period required to complete the instar development is shorter at 30 ºC (Ludwig, 1956). Even so, 

there are specific temperature requirements among the different stages of development of this 

species (Table 8).  

The lethal and chill-coma temperatures are 40-44 ºC (Martin et al., 1976) and 7-8 ºC, respectively, 

respectively, for exposure periods of 24 hours (Mutchmor and Richards, 1961; Punzo and Mutchmor, 

1980). Table 8 summarizes temperature ranges of rearing T. molitor at different stages of life cycle. 

4.1.7.2 Relative humidity (RH) 

Mealworms show more flexibility to relative humidity than to temperature. The growth rate of T. 

molitor larvae is highly dependent on moisture, with best growth rates reported at 80-100% ambient 

RH (Table 9) (Alves et al., 2016; Hardouin and Mahoux, 2003; Lardies et al., 2014). In low humidity 

conditions, development is impaired as it is very slow at 30% RH and hardly proceeds at 13% RH 

(Fraenkel, 1950). On the other hand, high levels of moisture favor the growth colony contaminants 
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(e.g., fungi, other microorganisms, mites), which can decrease the positive correlation between high 

temperature and quick development (Ribeiro et al., 2018). Therefore, a relative humidity of 60% to 

75% is desirable (Oonincx et al., 2015; Punzo and Mutchmor, 1980; Spencer and Spencer, 2006). The 

water requirement for the larvae is minimal due to their ability to absorb water from the saturated air 

at 75 - 90% relative humidity, while adult mealworms are not able to absorb atmospheric water. 

Therefore, the addition of a water source (i.e., through vegetables) is crucial for adult stages and has 

even a beneficial effect on the larvae stage, since it promotes a faster growth (Hansen et al., 2004; 

Ortiz et al., 2016). 

According to the literature, water has two important functions. Firstly, water has a positive effect on 

growth. Urs and Hopkins (1973) and Van Broekhoven et al. (2015) observed that mealworms have a 

better performance in indoor artificial rearing when the insects were supplemented with a source of 

water in addition to the dry diet. Moreover, Murray (1968) reported that when the mealworms larvae 

are deprived of water, they ingest lower amounts of food and are less efficient in converting the 

nutrients into body mass. Secondly, water can affect the content of nutrients of the larvae, although 

there are contrasting data in the literature. Oonincx et al. (2015) reported that the supplementation 

of the diets with a water source increases the water content but not the total fatty acids content of 

larvae. On the contrary, Urs and Hopkins (1973) observed that the availability of water increases the 

concentrations of total lipids. Nonetheless, both authors found no influence of water on mealworm 

fatty acid profile. Table 9 summarizes temperature ranges of rearing T. molitor at different stages of 

life cycle. 

4.1.7.3 Light conditions  

Light conditions (i.e., photoperiod) can strongly influence the development of mealworms. It is 

important to remember that the mealworm is a negative phototropic (or phototactic) species, thus it 

prefers dark environments (Balfour and Carmichael, 1928; Cloudsley‐Thompson, 1953). For instance, 

adults and larger larvae tend to hide inside the substrate when light is on and come close to surface 

during dark periods. However, this response to photoperiod disappears under constant conditions 

(Cloudsley‐Thompson, 1953). 

Larval development is optimal under long-day conditions, while lower development times result under 

photoperiodic conditions of 14L:10D. The elusion rate is also dependent on photoperiod and 

promoted under long-day conditions, with 45.5% at 14L:10D versus 24.2% at 10L:14D (Kim et al., 

2015). In addition, pupation is induced by the photoperiod, as it occurs under a 12L:12D regime at 

25ºC. Nevertheless, the interaction between light and temperature is a very important factor, in that 

the photoperiodic response was reversed at 30°C, as pupation was inhibited under 12L:12D and 

triggered under 18L:6D conditions (Tyshchenko and Ba, 1986). Recently Eberle et al. (2022) found that 

photoperiod influences the developmental time and growth rate. The highest survival rates and 

growth rates, and shortest developmental times, were observed in their study at 25 and 30 ◦C at 

constant darkness. 

4.1.7.4 Ventilation 

The oxygen amount is critical in mealworm rearing processes. Low oxygen concentration (hypoxia) 

increases the larval mortality, inducing hypertrophy of tracheae and overall affecting respiratory 

exchanges (Greenberg and Ar, 1996; Loudon, 1989, 1988). An oxygen concentration around 10.0-

10.5% inhibits insect growth and leads to the development of abnormalities and alteration of the sex 

ratio (higher proportion of females in the population) (Loudon, 1988). On the other hand, the number 

of instars is reduced under hyperoxia (>40% O2) conditions, resulting in lower larval biomass compared 

to normal oxygen values (Greenberg and Ar, 1996). 
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4.1.7.5 Interaction between factors  

As mentioned before, the number and duration of instar stages, the mealworm development, and the 

capacity of different stages at absorbing water from air are directly affected by temperature and 

humidity.  

The pupal stage is the stage more resilient to extreme conditions of temperature and relative 

humidity, whilst eggs and young larval stages are the most sensitive phases (Punzo and Mutchmor, 

1980). Indeed, mealworm development is favored when both temperature and humidity lay in a 

certain range. Dick (1937), as example, reported that oviposition does not occur at temperatures 

below 14 ºC even at 65% relative humidity and is significantly reduced even when temperature is 

optimal (27 ºC) but humidity is low (20%). Hardouin and Mahoux (2003) similarly reported that the 

female reproductive activity is promoted at relative humidity values of 90-100%. At extremely dry 

conditions mealworm larvae cease completely the food ingestion and become inactive until relative 

humidity gets favorable again (Urs and Hopkins, 1973). Many studies demonstrated that extreme 

temperature and humidity conditions affect the mealworm development and survival. For instance, 

at temperatures below 10 ºC (Punzo, 1975; Punzo and Mutchmor, 1980) or 12.5 ºC (Kim et al., 2015), 

water absorption is reduced, and the embryological development is not completed. Extremely dry 

conditions (12% relative humidity) elicit water losses from the eggs, which die due to desiccation 

(Punzo, 1975). However, the effect of either temperature or humidity on the mealworm life cycle is 

enhanced when one of these factors is at extreme levels. This means that the role of temperature on 

the development of mealworms is correlated with the relative humidity of the rearing and vice-versa 

(Punzo and Mutchmor, 1980). For example, at optimal temperatures of 25.0-27.5 ºC, mealworms can 

thrive even at extreme humidity conditions and long exposure periods. Moreover, a decreased 

humidity does not affect adults, larvae, or pupae at a temperature of 25 °C, but increases the mortality 

at 10°C (Punzo and Mutchmor, 1980). 

4.1.7.6 Controlling rearing conditions 

Even if mealworms can survive in a wide range of temperatures, small fluctuations from the optimal 

conditions can slow down the larva development. In large scale mass production facilities, moderate 

temperature stresses can cause uneven quality, resulting in losses when sorting the larvae or when 

separating the frass. The extended rearing time due to temperature stress increases the infrastructure 

cost per cycle as well. For these reasons, a careful temperature monitoring and management is 

essential in mealworm mass rearing (Ortiz et al., 2016).  

Energy cost and labor cost are important costs in mealworm production (Niyonsaba et al., 2021). 

Controlling rearing conditions by heating or cooling or increasing ventilation needs energy. In addition 

to slowed growth, and impaired predictability, uncontrolled conditions may also increase mortality or 

increase the risk of pest and pathogens. This may lead to increased labor cost in terms of increased 

manual handling and rejection of bad patches. 

In a large production facility with vertical growing system, temperature, humidity and concentration 

of gases can, however, vary markedly horizontally or vertically or between trays, depending on e.g. air 

flow or larvae activity, or temperature and humidity fluctuation outside the rearing facilities. For 

maintaining optimal rearing conditions regardless of tray location in the rearing facility, the 

parameters should be monitored in several spots or in the facility. A large data set observed utilizing 

affordable sensors and a predicting model could be used to keep optimal rearing conditions. Critical 

values for the measured variables should be determined in order to support decision making on 

whether to use energy or labor to adjust rearing conditions. 
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Table8 8. Minimum, optimal, and maximum temperature values to rear T. molitor, as reported in different works. 

 Minimum Optimal Maximum 

Eggs 

10 °C 
15 °C 
17 °C 

23-27 °C 
25 °C 

25-27 °C 

30 °C 
35 °C 

Larvae 

10 °C 
17 °C 
20 °C 

25 °C 
27-28 °C 

30 °C 
35 °C 

Pupae 

10 °C 
18 °C 
21 °C 

25 °C 
27 °C 

27.5 °C 
28 °C 

27-33 °C 

35 °C 

Adults 
10 °C 

14-16 °C 
25 °C 35 °C 

Adapted from: Ribeiro et al. (2018). 

 

Table9 9. Minimum, optimal, and maximum relative humidity values (%) to rear T. molitor, as reported in different 

works.  

 Minimum Optimal Maximum 

Eggs 12 

60-75 
70 
75 

98 

Larvae 
12 
30 

75 
60-70 

70 

98 

Pupae 12 
70 
75 

98 

Adults 
12 
20 

70 
75 

90-100 

98 

Adapted from: Ribeiro et al. (2018). 

 

4.1.8 Nutritional requirements  
4.1.8.1 Macronutrients 

In addition to a water source (i.e., fruits, vegetables, or agar), mealworm can be reared on wheat bran, 

which is an agricultural byproduct (Liu et al., 2020; Ortiz et al., 2016). The latter contains most of the 

necessary nutrients, although in sub-optimal proportions (Morales-Ramos et al., 2011). Protein 

sources as beer yeast (Ghaly and Alkoaik, 2009; Oonincx et al., 2015; Van Broekhoven et al., 2015), 

casein (Murray, 1960; Rho and Lee, 2014) and soy protein (Hardouin and Mahoux, 2003; Morales-

Ramos et al., 2013) are accordingly added to complement the diet. Given that the diet is the milestone 

of a successful and convenient artificial rearing, studies have been carried out to test the influence of 

diet on several life parameters of the mealworm (Davis, 1970; Fraenkel, 1950; Morales-Ramos et al., 

2013, 2010; Rho and Lee, 2014; Van Broekhoven et al., 2015), including fertility (Gerber and Sabourin, 

1984; Morales-Ramos et al., 2013; Urrejola et al., 2011), number of instars (Morales-Ramos et al., 

2010), survival rate (Morales-Ramos et al., 2010; Van Broekhoven et al., 2015), the intensity and 
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period of oviposition (Manojlovic, 1987; Morales-Ramos et al., 2013) and progeny production (Gerber 

and Sabourin, 1984).  

Mealworm lifecycle is highly conditioned by the dietary ratio protein (P): carbohydrate (C) (Martin and 

Hare, 1942; Rho and Lee, 2016, 2015, 2014; Urrejola et al., 2011). Rho and Lee (2016) reported an 

optimal P:C ratio of 1:1 for lifespan and lifetime reproductive success, while Martin and Hare (1942) 

observed maximum growth at a minimum of 50% of carbohydrates and 15% -25% of proteins in diet. 

Fats becomes an inhibitory factor only at values exceeding 3% (Martin and Hare, 1942). The most 

beneficial supplement to diet is protein and the addition of yeast at several concentrations proved to 

maximize weight gain and food conversion rates and decrease mortality and development times 

(Oonincx et al., 2015; Van Broekhoven et al., 2015). The importance of nutrient balance depends also 

on the developmental stage. The intensity and period of oviposition is highly dependent on the quality 

of the ingested food (Morales-Ramos et al., 2013). High quality diet result in high production of 

offspring by increasing the number of eggs and decreasing adult mortality (Gerber and Sabourin, 

1984). Compared to food consisting of crude fibers and carbohydrates, a rich and high-quality diet 

result the body protein contents two-fold higher and body fat contents five to six-fold higher (Ramos-

Elorduy et al., 2002). Moreover, mealworms fed on low P:C feed have higher body lipid content (Rho 

and Lee, 2014). 

For sustainable large-scale mass rearing, it is important to find a year around available and affordable 

substrate that meets the nutritional quality requirements of mealworm rearing. Side streams from 

food industry and former feedstuff products have accordingly shown high potential (Mancini et al., 

2019; Rumbos et al., 2020). From the sustainability perspective, it would be important to utilize low-

value feed materials which are not used elsewhere. 

4.1.8.2 Protein 

The dietary concentration of protein and the amino acid composition greatly influence T. molitor 

lifecycle, larval development time, survival, and weight gain (Morales-Ramos et al., 2013; Oonincx et 

al., 2015; Van Broekhoven et al., 2015). Reported optimal ranges of protein concentration are 2-32% 

(Davis and Leclercq, 1969). Growth rate is significantly enhanced by presence of protein in that 

mealworms can pass from a fresh weight gain of 2.3-2.9 mg to a weight of 45.5-55.6 mg when 

switching from a free-protein diet to a diet supplemented with yeast (John et al., 1979). In this regard, 

yeast is currently the best source of protein, even acting as a feeding stimulant. Other efficient protein 

sources that provide optimal effects are casein, and at a lower level, lactalbumin (Davis and Leclercq, 

1969; Fraenkel, 1950). Within amino acids, alanine, arginine, aspartic acid, cystine, histidine, 

isoleucine, leucine, methionine, proline, and valine should be fed at equivalent levels to those found 

in larval tissues, whereas phenylalanine should be provided at concentrations half of the values found 

in the larval tissues. Two limiting amino acids, threonine, and tryptophan should be administered at 

twice the concentration found in larvae body (John et al., 1979). It is important to remember that the 

presence of carnitine is absolutely necessary for the appropriate development of T. molitor (Hardouin 

and Mahoux, 2003). 

T. molitor has a highly stable body protein content, as the protein composition of the mealworm does 

not change even when fed with diets varying 2–3-fold in crude protein (Van Broekhoven et al., 2015). 

Adámková et al. (2020) found that both the nutritional value of T. molitor, especially the content of 

crude protein, amino acids, fat, and fatty acid profile can be affected by temperature and feed 

composition. They concluded that a higher proportion of protein diet could increase the content of 

crude protein in the insects. An increase in the temperature led only to a slight increase in the content 

of nitrogenous substances, in their study.  
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4.1.8.3 Fat 

Similar to mealworm’s protein content, fat composition is rather constant (i.e., rich in oleic, linoleic, 

and palmitic acids) even when fed on different diets, suggesting that the fatty acid composition is 

independent from the feeding diet (Oonincx et al., 2015). Even so, the addition of low concentrations 

of lipids to dietary regimes is beneficial, whilst high quantities are unfavorable and potentially 

pernicious (Morales-Ramos et al., 2013). Cholesterol is a necessary diet ingredient, while fat 

concentrations higher than 1% have no effect on any mealworm’s lifecycle parameter (Fraenkel, 1950) 

and become an inhibitor factor at concentrations above 3% (Martin and Hare, 1942). Finally, lipids-

rich diets promote the potential agglomeration of the substrate resulting in lower aeration and 

movement of mealworms, thus negatively interfering with air circulation and insect’s respiration 

(Alves et al., 2016). 

4.1.8.4 Carbohydrates 

Carbohydrates are crucial components of the mealworm diet as they strongly influence the growth of 

the insects. The optimal range of carbohydrates is 80-85%, while diets with only 20% carbohydrates 

results in very slow growth (Fraenkel, 1950). Although Fraenkel (1950) reported no significant 

differences between the growth of mealworms with glucose and starch, diets comprising starch, 

sucrose or lactose, and amino acid mixtures resulted in smaller mealworm growth. On the other hand, 

bacteriological dextrin as a carbohydrate source resulted in a weight gain two-fold higher compared 

to glucose (Davis, 1974). 

4.1.8.5 Micronutrients  

Vitamins are indeed necessary to promote the growth of mealworms, as larvae do not survive if fed 

with a vitamin-free diet of casein, fat, carbohydrate, salt mixture and cholesterol. However, this diet 

can be optimal for mealworms when supplemented with yeast or liver, which provide the necessary 

micronutrients (Martin and Hare, 1942). Martin and Hare (1942) also demonstrated that vitamins A, 

D, C, E, K, choline, thiamine, riboflavin, pyridoxin, nicotinic acid and pantothenic acid are important 

elements for the growth of mealworms. 

4.1.8.6 Side stream products as feeding for Tenebrio molitor 

As mentioned above, mealworms can survive on varied diets consisting of plant and animal-based 

substances. The larvae can utilize low value biomasses converting different side streams from 

agriculture and food industry into body mass. For economically sensible mass production, it is 

necessary to find low-price sidestreams with nutritional quality and composition that meets 

mealworm requirements. Valorisation potential of some of the side streams from food chain is limited 

either due to legal aspects, seasonality, transport and storability or unsuitability for insect production. 

A lot of research has recently been conducted with the aim of finding affordable and year-round 

available sidestreams that can be utilized in mealworm production. Especially, the underutilized side 

streams, that are currently not used in feed processing for other animals, have been in focus when 

trying to find solutions to make the food chain more sustainable.  

A comprehensive review on use of vegetable-based byproducts in mealworm diet has been published 

recently by van Peer et al. (2021). Spent brewer’s or distiller’s grains, breadcrumbs or cookie remains, 

for example, have been successfully included in mealworm diets, with the exception that cinnamon in 

some bakery side streams has shown to be toxic for mealworm. Carrot is often used as moisture 

source in mealworm diet, but it can also be mixed with other vegetable sidestreams such as mixed 

peels of onion, potato, sweet potato, and cucumber. For optimal larvae performance it’s, however, 

important to prepare the mix carefully so that the composition meets the nutritional requirements of 

mealworm larvae. Potato glycoalkaloids may be toxic to insects that are not adapted to feed on 
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potato, but mealworm has shown to be more tolerant to potato glycoalkaloids than some sensitive 

beetles such as Zophobas atratus. (Rev. Peer et al., 2021) 

Suitability of some low-cost sidestreams from cereal and legume seed cleaning process such as 

triticale, barley, durum wheat, oat, vetch, pea, lupin, lentil, lucerne and broad bean have recently been 

tested for mealworm feeding (Rumbos et al., 2021). Overall, the lupin and triticale byproducts 

efficiently supported complete larval development, from first instar to pupation, and gave the best 

results among the byproducts tested in terms of larval growth and survival, development time and 

feed utilization. 

Agricultural residues such as leek foliage, cauliflower leaves, Belgian endive roots and Belgian endive 

white leaves can also be used as moisture source, as far as they are properly mixed. Lignocellulose-

rich agricultural residues have been tested and wheat straw, rice straw, rice bran, rice husk and corn 

straw have shown to usable in mealworm diet, but they need pretreatments such as cutting into small 

pieces, washing or drying in a forced-air drying oven. (Rev. Peer et al., 2021). Pretreatments with 

microbes has also shown potential for fiber-rich side streams before addition in mealworm diet (Zhang 

et al., 2021) 

4.1.9 Production technologies and separation  
Mealworm production relies on trays where the development of larvae occurs and where adults can 

mate. The tray size is usually 65 × 50 × 15 cm (length × width × height, Figure 7), as these trays are 

easy to handle and prevent escaping of mealworms. The material of the tray may vary (i.e., wood, 

polyethylene, or fiberglass). It should be easy to clean and shall not promote the accumulation of 

bacteria and fungi. Multilevel racks or shelves are commonly used to hold the trays and save space 

(Ortiz et al., 2016).  

However, the current rearing processes relying on trays have multiple disadvantages. Firstly, they are 

not an open system and therefore waste products (frass) accumulate on their surface, favoring the 

proliferation of mites and other organisms that could reduce the development of mealworms (Ortiz 

et al., 2016). To improve this system, the bottom of the trays can be replaced with a net, which allow 

the frass to fall down, preventing pernicious accumulation of wastes (Morales-Ramos et al., 2012). 

Secondly, eggs laid inside trays are difficult to collect, and the tray must be removed and emptied from 

insects and food sources to enable egg removal. For this reason, adults are usually separated from the 

feeding substrate and placed in a specific tray before every oviposition period. Once eggs are laid, it is 

of fundamental importance to remove adults from the oviposited substrate to prevent egg 

cannibalism, which occurs when adults are deprived of food. In summary, the tray system demands a 

great amount of labor, as the number of processing steps and furniture is very high (Ortiz et al., 2016).  

An implemented system for rearing T. molitor has been described by Morales-Ramos et al. (2012). The 

system consists in stackable containers with nylon screens (0.5 mm openings) at the bottom, where 

larvae can thrive as they are provided with wheat bran and supplements as feeding source. By moving, 

larvae promote the falling of the frass that pass from the upper container to the lower one, reaching 

the last container of the stack, which collects the particles. Cleaning the container prevents mite 

infestations and allows the estimation of the quantity of feed consumed by the larvae, which provides 

useful information on the health of the rearing. Unfortunately, these containers cannot hold first to 

fourth instars, which must be temporarily (4–5 weeks at 25–28°C) reared in solid trays as they can 

pass through the net (Ortiz et al., 2016). A further implementation of the screen trays consists in using 

a screen with opening dimensions of 0.85 mm, through which small larvae (first to sixth instars) can 

pass (Morales-Ramos and Rojas, 2015). The loss of food is limited, while the larvae fall on the bottom 

tray, where they can thrive by feeding on small food particles falling through upper trays. The great 
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advantage of this screened container system is that adults do not need to be periodically removed 

from the container for oviposition, while their progeny can be collected from the bottom tray once 

they hatch (Ortiz et al., 2016). 

A crucial factor to consider in mealworm rearing is that the species displays the high level of variability 

in terms of developmental time, thus the life cycle is rarely synchronized (Morales-Ramos et al., 2010; 

Morales-Ramos and Rojas, 2015). Given that instars are differently influenced by environmental 

factors and have different diet requirements, separation is an important part of the rearing process. 

Moreover, separation prevents cannibalization of pupae by larvae (Martin et al., 1976; Morales-

Ramos et al., 2012; Morales-Ramos and Rojas, 2015; Weaver and McFarlane, 1990). Most separation 

procedures were previously performed manually by shaking the screened containers, whose size 

changes in function of the larval stage. However, a mechanized procedure was recently developed by 

Morales-Ramos et al. (2011). In this system, a circular separator comprising three-screen is governed 

by a conveyor, and there is no need of changing screen sizes. Large, medium, small larvae and frass 

particles can be easily and continuously separated. In particular, the openings of the first and second 

screens are rectangular to facilitate the passage of elongated-shaped larvae, while the last screen has 

regular square openings (0.5 mm) to enable the passage of frass particles (Ortiz et al., 2016).  

Separation also allows to select a breeding stock, by sampling a group of large larvae from the screen. 

This group continues its development in a tray. Unfortunately, cannibalism within the breeding stock 

can still occur as last instar larvae can have a development time range of over 30 days (Morales-Ramos 

and Rojas, 2015). 

To ensure that all the larvae sizes grow equally and that they are well distributed in the crate, 

Deruytter et al. (2021) strongly recommended the placement of wet feed within 5 cm from the larvae. 

In small scale rearing, wet feed can be distributed manually, while upscaling to industrial volume 

requires wet feed dosing to be automatized.  

4.1.10 Harvesting and suppression  
An electric vibrating mesh screen is commonly used to harvest the larvae, even if in small facilities this 

process is performed by hand, increasing the labor. Similarly, the pupae that will become adults has 

to be separated and this process needs mechanization to reduce cost and increase efficiency of most 

mealworm facilities (Ortiz et al., 2016). The harvested larvae can be then dried or frozen; for example, 

Chinese mealworm farms exploit a microwave drying machine, which also allows long storage. 

Freezing is the most common practice to stabilize the mealworms but demands a great amount of 

energy (Lenaerts et al., 2018). 

The nutrient quality of mealworms processed by using techniques such as freeze drying and drying 

using vacuum oven or rack oven is rather similar. In fact, the composition and fatty acids profiles are 

similar between larvae processed with these methods, even if rack oven drying promoted Maillard 

reactions, which could improve the oxidative stability of the final product. At any rate, if we consider 

the energy cost in relation to the quality of dried mealworms, long process times should be avoided. 

Rack oven drying seems the best processing method, as it preserves the nutrient quality of the 

mealworms and it is the most convenient drying method. In this regard, rack oven drying has an energy 

cost of € 0.67/kg, which is significantly lower than the cost of vacuum oven drying (€ 3.24/kg) or freeze 

drying (€ 2.88/kg) (Kröncke et al., 2019). 
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Figure77. Conventional mealworm trays. (A) Larvae growing trays. (B) Adult reproductive trays. Photo: Jeffery Tomberlin 
(Ortiz et al., 2016). 

 

4.2 Emissions and frass 
During their development, mealworms can produce waste frass of approximately 2-3 times their final 

biomass, and a great proportion of the feedstock (i.e., wheat bran) is necessary to promote insect 

growth, whilst an impressive amount of egested frass needs to be treated. Currently, the management 

of waste frass increase the costs incurred by mealworm farms. The mealworm frass can be converted 

into valuable products, as it could be used as organic fertilizer. It has been also recently proposed to 

utilize mealworm frass as raw material for producing biochar, which is a charcoal used as a soil 

amendment and adsorbent, usually produced from wood chips, crop and agricultural wastes (Yang et 

al., 2019).  

4.3 Quality and risk profile 
Notwithstanding the promising future of T. molitor as food and feed source, the nutritional value and 

safety risks linked with mealworm consumption depend on the feeding substrate (EFSA, 2015). Toxic 

metals can be acquired from feeding substrates and be accumulated in the insects body (Truzzi et al., 

2019; Vijver et al., 2003). As consequence, insect-based products could be enriched of these toxic 

elements. As example, mealworms can accumulate cadmium, lead, and arsenic in their bodies if fed 

on organic substrates cultivated on polluted soils (Truzzi et al., 2019; Vijver et al., 2003).  

The correlation between diverse feeding substrates and accumulation of heavy metals in mealworms 

was evaluated in a recent study. Wheat flour represented the least contaminated results of all 

considered metals, whilst the highest concentration of cadmium and lead was recorded from organic 

wheatmeal, and organic olive-pomace represented the largest source of mercury and arsenic. Even 

so, metal concentrations were below the legal limit of undesirable substances in animal feed 

(2002/32/EC) in all the tested substrates, which can be therefore considered safe in terms of heavy 

metal content. In particular, mercury was the only element that was accumulated in T. molitor’s body, 

whilst cadmium, nickel and arsenic penetrated in larvae and were excreted without accumulating. 

Interestingly, mealworms are a safe food from the point of view of mercury intake as their low 
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selenium content provides a valuable protection against mercury toxicity. To conclude, risk of 

exposure to metals due to the consumption of mealworms is rather low and in compliance with 

European Union regulations (Truzzi et al., 2019). Moreover, the gut of mealworm does not contain 

foodborne human pathogens such as Salmonella or Listeria monocytogenes, which suggests that this 

insect does not pose a risk for human health (Marshall et al., 2016).  

4.4 Costs and markets 
Insect production is a new industry and thus there are no official statistics describing mealworm 

production volumes, producer prices or market size. Several market research, however, give estimates 

on current state of insect market and growth potential in the industry.  

Fortune Business Insights (2022) for example estimates that the global insect protein market size is 

$189.32 million, in 2022 and is projected to grow to $856.08 million by 2029 (CAGR of 24,1% for the 

forecast period). The share of Coleoptera in the global insect protein market was estimated to be 

24,19% in 2021.  

Meticulous Research (2022) by contrast expects mealworm market to reach $1,27 billion by 2030, at 

a CAGR of 25,8% during the forecast period 2022–2030. In terms of volume, the mealworms market 

is expected to grow at a CAGR of 28,6% from 2022–2030 to reach 367,491.7 tons by 2030. In the 

report, the mealworms market is segmented into animal feed, aquafeed, pet food, food & beverages, 

and other applications.  

In 2022, the animal feed segment is estimated to be the largest segment in the mealworms market. 

The growth of this segment is driven by the wide availability of mealworm products for use in animal 

feed, growing usage of mealworm-based products by feed manufacturers, and the high nutritional 

value of mealworms in animal nutrition. (Meticulous Research, 2022) 

Of the five major geographies (North America, Europe, Asia-Pacific, Latin America, and the Middle East 

& Africa), Europe is expected to account for the largest share of the mealworms market in 2022. The 

large market share is attributed mainly to the presence of key mealworm manufacturers, increasing 

demand for alternative protein sources, high demand for protein-rich food and feed, and the presence 

of supportive regulation and policies for insect farming. (Meticulous Research, 2022) 

Rabobank estimates that the demand for insect protein, mainly used as an animal feed and pet food 

ingredient, could reach half a million metric tons by 2030, up from 2020 market of approximately 

10,000 metric tons (DeJong and Nikolik, 2021). In Rabobank’s estimate, pet food is the largest market 

for insect proteins, followed by the aquafeed market. The small volume is one of the key reasons 

restricting the use of insect protein in aquafeed. The price of insect protein ranges between EUR 3 500 

to EUR 5 500 per metric ton, which is significantly higher than fishmeal and soy protein, and may thus 

restrict the competitiveness of insect proteins as an alternative feed ingredient. Prices are however 

expected to drop by €2,000 per metric ton after the industry has completed the scale-up phase and 

the sector has reached maturity. (DeJong and Nikolik, 2022) 

As a comparison, the size of animal feed protein ingredients global market exceeded USD 150 billion, 

in 2019, and is projected to register more than 6.0% CAGR between 2020 and 2026 (Ahuja & Singh, 

2020).  

Mealworm has an excellent nutritional profile expressed as content in proteins and in fats fibers, 

ashes, and dietary energy. Mealworm fatty acids profile and content can depend on multiple 

parameters, such as diet, environment, and life stage. Both the larvae body fat mass and the frass are 

rich in mono- and polyunsaturated fatty acids. These properties make mealworm interesting in human 
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nutrition. However current EU novel food regulation doesn’t allow processed insects in food market. 

Regarding chitin and chitosan, their growing application in the pharmaceutical, biomedical, cosmetic 

and food sectors, and water treatment is expected to drive market growth. (Rev. Errico et al., 2021). 

Table 10 summarises operational production costs and selling prices of mealworm, reported in 

selected studies. The production costs of insects are often quite high because of high labour costs, as 

routine procedures such as feeding are carried out manually. For example, Wouters et al. (2019) 

presented a model where labour costs were 62% of the total production costs. By using an automated 

feeding line for T. molitor, having the capacity of producing up to 50 tons of mealworms per year, 

labour costs could be reduced by 75%. Consequently, the minimal selling price required for a producer 

to cover the production costs decreased from 5.26 €/kg live weight to 3.71 €/kg. Upscaling the system 

to a production of 600 tons was estimated to reduce the production costs down to 2.48 €/kg. Besides 

saving costs by automation and upscaling, the feed price and feed efficiency played an important role 

as feed costs represented 29% of the total production costs. Reducing either the feed price by 50% or 

halving the feed consumption (i.e. enhancing feed efficiency) could have further reduced the break-

even selling price of 600 tons unit down to 1.78 €/kg. (Wouters et al., 2019). 

Table 100. Prices of T. molitor larvae and operational costs of rearing as presented in scientific literature (table modified from 
Niyonsaba et al., 2021, Niemi et al., 2020). 

Country Price, €/t Larvae 
type 

Operational cost, 
€/t dried larvae1 

Reference 

Italy 10,850-17,000 Pet food, 
fresh 

na Mancuso et al. (2019) 

EU/China 45,454/5,727 Dried na Ortiz et al. (2016) 

Germany 32,330 Dried na Rumpold and Schlüter 
(2013) 

The 
Netherlands 

15,800-97,000 Fresh/dried 1,090-2,140 Meuwissen (2011) 

China 900-165,800 Meal na Niemi et al. (2020) 
1 Operational costs may include: feed, water, electricity, labour, gas 

 

4.5 Concluding remarks 
Workflows in mealworm mass production include multiple tasks that are needed to regulate the 

growing conditions and optimize the impact of inputs on final products. Everyday decision making is 

needed in many of the steps in the workflow. Data on feed quality, growing conditions, and larvae 

growth are needed for informed decisions. For optimizing processes some systems for sensing 

important parameters in production facilities, modelling feed conversion and larvae growth and 

predict the course of process have been developed. Observed realtime data, and models could be 

included in a decision support system to help insect grower to make sensible decisions and optimize 

production processes. 

Mealworms are also usually monitored at population-level (e.g. a crate), and sensing environmental 

conditions and the substrate are important for the performance of mealworms. However, as opposed 

to BSF, mealworms grow in rather dry substrates. One of the main factors impacting the productivity 

of mealworm rearing system is the larval density. High densities may cause pupation inhibition, 

cannibalism, incomplete development and lower growth rates, likely due to competition. The 

development of T. molitor occurs between 17 ºC and 30 ºC, but mealworms should usually be reared 

at a temperature of 25-27 ºC because fluctuations from the optimal conditions can slow down the 
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larva development. Mealworms show more flexibility to relative humidity than to temperature. The 

desirable relative humidity is in most cases 70-75%, although even large deviations from these 

numbers may be tolerated. Controlling L:D cycle is important because photoperiod can strongly 

influence the development of mealworms, and the desirable pattern is 14L:10D. Another critical 

parameter is oxygen concentration, because low oxygen concentration increases the larval mortality. 

The oxygen concentration of at least around 10% and no more than 40% is required for mealworms 

to be viable.  

Mealworms can utilize quite wide range of biomasses in their diets. In addition to a water source (i.e., 

fruits, vegetables or agar), mealworms can be reared on wheat bran which may be supplemented with 

a protein source. Mealworm lifecycle and performance is nevertheless conditioned by the dietary ratio 

protein: carbohydrate. However, studies have reported a wide optimal range (2-32%) of protein 

concentrations.  

It is also important to take into account in mealworm rearing is that the species displays high level of 

variability in terms of developmental time. Therefore, the life cycle is rarely synchronized and this 

increases the challenges of monitoring the process with sensors and of responding to monitoring 

observations by using dynamic management measures. 
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